Hilary Ranson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8297867/publications.pdf Version: 2024-02-01

		9264	9589
191	22,817	74	142
papers	citations	h-index	g-index
217	217	217	10860
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>In vivo</i> functional validation of the <scp>V402L</scp> voltage gated sodium channel mutation in the malaria vector <i>An. gambiae</i> . Pest Management Science, 2022, 78, 1155-1163.	3.4	15
2	Risk of Plasmodium falciparum infection in south-west Burkina Faso: potential impact of expanding eligibility for seasonal malaria chemoprevention. Scientific Reports, 2022, 12, 1402.	3.3	6
3	Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids. Insects, 2022, 13, 247.	2.2	11
4	Temporal variation of highâ€level pyrethroid resistance in the major malaria vector <scp><i>Anopheles gambiae</i></scp> s.l. in Yaoundé, Cameroon, is mediated by targetâ€site and metabolic resistance. Medical and Veterinary Entomology, 2022, 36, 247-259.	1.5	4
5	Strain Characterisation for Measuring Bioefficacy of ITNs Treated with Two Active Ingredients (Dual-AI ITNs): Developing a Robust Protocol by Building Consensus. Insects, 2022, 13, 434.	2.2	12
6	Knowledge translation and evidence generation to increase the impact of vector control in Burkina Faso, Cameroon and Malawi. BMJ Global Health, 2022, 7, e008378.	4.7	3
7	A closer look at the WHO cone bioassay: video analysis of the hidden effects of a human host on mosquito behaviour and insecticide contact. Malaria Journal, 2022, 21, .	2.3	9
8	A population genomic unveiling of a new cryptic mosquito taxon within the malariaâ€ŧransmitting <i>Anopheles gambiae</i> complex. Molecular Ecology, 2021, 30, 775-790.	3.9	16
9	Quantifying individual variability in exposure risk to mosquito bites in the Cascades region, Burkina Faso. Malaria Journal, 2021, 20, 44.	2.3	13
10	Transcriptomic analysis reveals pronounced changes in gene expression due to sub-lethal pyrethroid exposure and ageing in insecticide resistance Anopheles coluzzii. BMC Genomics, 2021, 22, 337.	2.8	18
11	Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. The Cochrane Library, 2021, 2021, CD012776.	2.8	60
12	The issue is not â€~compliance': exploring exposure to malaria vector bites through social dynamics in Burkina Faso. Anthropology and Medicine, 2021, , 1-18.	1.2	6
13	Pyriproxyfen-treated bed nets reduce reproductive fitness and longevity of pyrethroid-resistant Anopheles gambiae under laboratory and field conditions. Malaria Journal, 2021, 20, 273.	2.3	11
14	CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genetics, 2021, 17, e1009556.	3.5	27
15	Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Scientific Reports, 2021, 11, 17569.	3.3	22
16	Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics, 2021, 22, 891.	2.8	11
17	Integration of whole genome sequencing and transcriptomics reveals a complex picture of the reestablishment of insecticide resistance in the major malaria vector Anopheles coluzzii. PLoS Genetics, 2021, 17, e1009970.	3.5	14
18	A sensory appendage protein protects malaria vectors from pyrethroids. Nature, 2020, 577, 376-380.	27.8	129

#	Article	IF	CITATIONS
19	Barrier bednets target malaria vectors and expand the range of usable insecticides. Nature Microbiology, 2020, 5, 40-47.	13.3	28
20	Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasites and Vectors, 2020, 13, 277.	2.5	17
21	A cohort study to identify risk factors for Plasmodium falciparum infection in Burkinabe children: implications for other high burden high impact countries. Malaria Journal, 2020, 19, 371.	2.3	7
22	IR-TEx: An Open Source Data Integration Tool for Big Data Transcriptomics Designed for the Malaria Vector Anopheles gambiae . Journal of Visualized Experiments, 2020, , .	0.3	0
23	Effects of insecticide resistance and exposure on Plasmodium development in Anopheles mosquitoes. Current Opinion in Insect Science, 2020, 39, 42-49.	4.4	32
24	Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets. Parasites and Vectors, 2020, 13, 17.	2.5	35
25	A steroid hormone agonist reduces female fitness in insecticide-resistant Anopheles populations. Insect Biochemistry and Molecular Biology, 2020, 121, 103372.	2.7	6
26	Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. ELife, 2020, 9, .	6.0	20
27	Mosquitoes cloak their legs to resist insecticides. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191091.	2.6	56
28	Anopheline species composition and the 1014F-genotype in different ecological settings of Burkina Faso in relation to malaria transmission. Malaria Journal, 2019, 18, 165.	2.3	8
29	Characterisation of Anopheles strains used for laboratory screening of new vector control products. Parasites and Vectors, 2019, 12, 522.	2.5	52
30	Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25764-25772.	7.1	76
31	Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: a compound-randomized controlled trial. Malaria Journal, 2019, 18, 383.	2.3	23
32	A testing cascade to identify repurposed insecticides for next-generation vector control tools: screening a panel of chemistries with novel modes of action against a malaria vector. Gates Open Research, 2019, 3, 1464.	1.1	30
33	A comprehensive testing cascade to identify resistance breaking repurposed insecticides for next-generation vector control tools: screening a panel of chemistries against a malaria vector. Gates Open Research, 2019, 3, 1464.	1.1	24
34	Insecticide-resistant malaria vectors must be tackled. Lancet, The, 2018, 391, 1551-1552.	13.7	44
35	The <i>Anopheles gambiae</i> ATPâ€binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect Molecular Biology, 2018, 27, 110-122.	2.0	64
36	Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. The Cochrane Library, 2018, 11, CD012776.	2.8	67

#	Article	IF	CITATIONS
37	Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nature Communications, 2018, 9, 5282.	12.8	84
38	Unexpectedly high Plasmodium sporozoite rate associated with low human blood index in Anopheles coluzzii from a LLIN-protected village in Burkina Faso. Scientific Reports, 2018, 8, 12806.	3.3	23
39	Do bednets including piperonyl butoxide offer additional protection against populations of <i>Anopheles gambiae s.l</i> . that are highly resistant to pyrethroids? An experimental hut evaluation in Burkina Fasov. Medical and Veterinary Entomology, 2018, 32, 407-416.	1.5	45
40	Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet, The, 2018, 392, 569-580.	13.7	102
41	House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006283.	3.0	29
42	Current and Future Prospects for Preventing Malaria Transmission via the Use of Insecticides. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026823.	6.2	27
43	The transcription factor Maf-S regulates metabolic resistance to insecticides in the malaria vector Anopheles gambiae. BMC Genomics, 2017, 18, 669.	2.8	65
44	An Operational Framework for Insecticide Resistance Management Planning. Emerging Infectious Diseases, 2016, 22, 773-779.	4.3	36
45	Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Cà te d'lvoire. Malaria Journal, 2016, 15, 426.	2.3	65
46	Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8975-8980.	7.1	89
47	Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. albopictus. Insect Biochemistry and Molecular Biology, 2016, 74, 61-67.	2.7	33
48	Pyriproxyfen is metabolized by P450s associated with pyrethroid resistance in An. gambiae. Insect Biochemistry and Molecular Biology, 2016, 78, 50-57.	2.7	74
49	Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9268-9273.	7.1	279
50	Status of insecticide resistance in high-risk malaria provinces in Afghanistan. Malaria Journal, 2016, 15, 98.	2.3	19
51	Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends in Parasitology, 2016, 32, 187-196.	3.3	658
52	National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy and Planning, 2016, 31, 91-101.	2.7	20
53	Averting a malaria disaster: will insecticide resistance derail malaria control?. Lancet, The, 2016, 387, 1785-1788.	13.7	366
54	Spatial and Temporal Trends in Insecticide Resistance among Malaria Vectors in Chad Highlight the Importance of Continual Monitoring. PLoS ONE, 2016, 11, e0155746.	2.5	15

#	Article	IF	CITATIONS
55	The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. ELife, 2016, 5, .	6.0	194
56	Challenges and opportunities associated with the introduction of next-generation long-lasting insecticidal nets for malaria control: a case study from Burkina Faso. Implementation Science, 2015, 11, 103.	6.9	5
57	Fit for purpose: do we have the right tools to sustain NTD elimination?. BMC Proceedings, 2015, 9, S5.	1.6	5
58	Detection of G119S ace-1 R mutation in field-collected Anopheles gambiae mosquitoes using allele-specific loop-mediated isothermal amplification (AS-LAMP) method. Malaria Journal, 2015, 14, 477.	2.3	22
59	When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malaria Journal, 2015, 14, 210.	2.3	82
60	To assess whether addition of pyriproxyfen to long-lasting insecticidal mosquito nets increases their durability compared to standard long-lasting insecticidal mosquito nets: study protocol for a randomised controlled trial. Trials, 2015, 16, 195.	1.6	8
61	Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 106-115.	1.8	41
62	The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics, 2015, 16, 146.	2.8	83
63	The AvecNet Trial to assess whether addition of pyriproxyfen, an insect juvenile hormone mimic, to long-lasting insecticidal mosquito nets provides additional protection against clinical malaria over current best practice in an area with pyrethroid-resistant vectors in rural Burkina Faso: study protocol for a randomised controlled trial. Trials. 2015. 16. 113.	1.6	21
64	Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasites and Vectors, 2015, 8, 181.	2.5	166
65	Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12081-12086.	7.1	71
66	Evaluation of a temperate climate mosquito, <i>Ochlerotatus detritus</i> (= <i>Aedes detritus</i>), as a potential vector of Japanese encephalitis virus. Medical and Veterinary Entomology, 2015, 29, 1-9.	1.5	39
67	Combining Organophosphate Treated Wall Linings and Long-lasting Insecticidal Nets for Improved Control of Pyrethroid Resistant Anopheles gambiae. PLoS ONE, 2014, 9, e83897.	2.5	31
68	Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management. PLoS ONE, 2014, 9, e99822.	2.5	50
69	Increased Pyrethroid Resistance in Malaria Vectors and Decreased Bed Net Effectiveness, Burkina Faso. Emerging Infectious Diseases, 2014, 20, 1691-6.	4.3	167
70	Long-term trends in Anopheles gambiae insecticide resistance in Côte d'lvoire. Parasites and Vectors, 2014, 7, 500.	2.5	29
71	Molecular characterization of DDT resistance in Anopheles gambiae from Benin. Parasites and Vectors, 2014, 7, 409.	2.5	32
72	Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics, 2014, 15, 1018.	2.8	63

#	Article	IF	CITATIONS
73	Identification of Carboxylesterase Genes Implicated in Temephos Resistance in the Dengue Vector Aedes aegypti. PLoS Neglected Tropical Diseases, 2014, 8, e2743.	3.0	68
74	CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito Anopheles gambiae. PLoS Genetics, 2014, 10, e1004236.	3.5	243
75	Differential transcription profiles in <i><scp>A</scp>edes aegypti</i> detoxification genes after temephos selection. Insect Molecular Biology, 2014, 23, 199-215.	2.0	46
76	Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasites and Vectors, 2014, 7, 274.	2.5	34
77	Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasites and Vectors, 2014, 7, 213.	2.5	48
78	A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biology, 2014, 15, R27.	9.6	267
79	Framework for rapid assessment and adoption of new vector control tools. Trends in Parasitology, 2014, 30, 191-204.	3.3	49
80	Facing the Resistance Crisis in Malaria Control by Developing and Evaluating 'Resistance-Breaking' Products. Outlooks on Pest Management, 2014, 25, 33-35.	0.2	1
81	Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae. PLoS ONE, 2014, 9, e92662.	2.5	102
82	Islands and Stepping-Stones: Comparative Population Structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and Implications for the Spread of Insecticide Resistance. PLoS ONE, 2014, 9, e110910.	2.5	10
83	Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from VallA©e du Kou, Burkina Faso. Gene, 2013, 519, 98-106.	2.2	111
84	The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pesticide Biochemistry and Physiology, 2013, 107, 226-234.	3.6	63
85	The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasites and Vectors, 2013, 6, 343.	2.5	70
86	Microarray and RNAi Analysis of P450s in Anopheles gambiae Male and Female Steroidogenic Tissues: CYP307A1 Is Required for Ecdysteroid Synthesis. PLoS ONE, 2013, 8, e79861.	2.5	34
87	Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Neglected Tropical Diseases, 2013, 7, e2438.	3.0	103
88	THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution; International Journal of Organic Evolution, 2013, 67, 1218-1230.	2.3	253
89	Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity, 2013, 110, 389-397.	2.6	46
90	ldentifying permethrin resistance loci in malaria vectors by genetic mapping. Parasitology, 2013, 140, 1468-1477.	1.5	9

#	Article	IF	CITATIONS
91	Resistance to DDT in an Urban Setting: Common Mechanisms Implicated in Both M and S Forms of Anopheles gambiae in the City of Yaoundé Cameroon. PLoS ONE, 2013, 8, e61408.	2.5	92
92	Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. PLoS Neglected Tropical Diseases, 2012, 6, e1692.	3.0	163
93	Identification and validation of a gene causing cross-resistance between insecticide classes in <i>Anopheles gambiae</i> from Ghana. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6147-6152.	7.1	212
94	Cytochrome b Mutation Y268S Conferring Atovaquone Resistance Phenotype in Malaria Parasite Results in Reduced Parasite bc1 Catalytic Turnover and Protein Expression. Journal of Biological Chemistry, 2012, 287, 9731-9741.	3.4	77
95	Footprints of positive selection associated with a mutation (<i>N1575Y</i>) in the voltage-gated sodium channel of <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6614-6619.	7.1	179
96	Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasites and Vectors, 2012, 5, 113.	2.5	60
97	Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology, 2012, 104, 126-131.	3.6	292
98	Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?. Malaria Journal, 2012, 11, 232.	2.3	65
99	Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasites and Vectors, 2012, 5, 78.	2.5	66
100	Pyrethroid Resistance in Anopheles gambiae, in Bomi County, Liberia, Compromises Malaria Vector Control. PLoS ONE, 2012, 7, e44986.	2.5	24
101	Additional Selection for Insecticide Resistance in Urban Malaria Vectors: DDT Resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS ONE, 2012, 7, e45995.	2.5	88
102	Multiple-Insecticide Resistance in <i>Anopheles gambiae</i> Mosquitoes, Southern Côte d'Ivoire. Emerging Infectious Diseases, 2012, 18, 1508-1511.	4.3	200
103	Transcription of detoxification genes after permethrin selection in the mosquito <i>Aedes aegypti</i> . Insect Molecular Biology, 2012, 21, 61-77.	2.0	75
104	Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso. Malaria Journal, 2012, 11, 24.	2.3	70
105	The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 2011, 41, 203-209.	2.7	244
106	Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Medical and Veterinary Entomology, 2011, 25, 233-239.	1.5	40
107	Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends in Parasitology, 2011, 27, 91-98.	3.3	903
108	Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from southern Africa. Pesticide Biochemistry and Physiology, 2011, 99, 140-147.	3.6	23

#	Article	IF	CITATIONS
109	Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution. Malaria Journal, 2011, 10, 154.	2.3	140
110	Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malaria Journal, 2011, 10, 261.	2.3	112
111	Extensive permethrin and DDT resistance in Anopheles arabiensis from eastern and central Sudan. Parasites and Vectors, 2011, 4, 154.	2.5	22
112	Mosquito age and susceptibility to insecticides. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 247-253.	1.8	63
113	A De Novo Expression Profiling of Anopheles funestus, Malaria Vector in Africa, Using 454 Pyrosequencing. PLoS ONE, 2011, 6, e17418.	2.5	47
114	Sequencing of <i>Culex quinquefasciatus</i> Establishes a Platform for Mosquito Comparative Genomics. Science, 2010, 330, 86-88.	12.6	424
115	Plasmodium infection alters Anopheles gambiae detoxification gene expression. BMC Genomics, 2010, 11, 312.	2.8	37
116	Transcriptomics and disease vector control. BMC Biology, 2010, 8, 52.	3.8	13
117	Metabolic enzymes associated with xenobiotic and chemosensory responses in <i>Nasonia vitripennis</i> . Insect Molecular Biology, 2010, 19, 147-163.	2.0	172
118	A Simple Colorimetric Assay for Specific Detection of Glutathione-S Transferase Activity Associated with DDT Resistance in Mosquitoes. PLoS Neglected Tropical Diseases, 2010, 4, e808.	3.0	64
119	Pathogenomics of <i>Culex quinquefasciatus</i> and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010, 330, 88-90.	12.6	150
120	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
121	Pyrethroid Resistance in Aedes aegypti from Grand Cayman. American Journal of Tropical Medicine and Hygiene, 2010, 83, 277-284.	1.4	199
122	Two duplicated P450 genes are associated with pyrethroid resistance in <i>Anopheles funestus</i> , a major malaria vector. Genome Research, 2009, 19, 452-459.	5.5	208
123	Recent Rapid Rise of a Permethrin Knock Down Resistance Allele in Aedes aegypti in México. PLoS Neglected Tropical Diseases, 2009, 3, e531.	3.0	130
124	Towards a Genetic Map for Anopheles albimanus: Identification of Microsatellite Markers and a Preliminary Linkage Map for Chromosome 2. American Journal of Tropical Medicine and Hygiene, 2009, 81, 1007-1012.	1.4	2
125	Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics, 2009, 10, 494.	2.8	163
126	Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 1139-1145.	1.8	128

#	Article	IF	CITATIONS
127	Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobioticsâ~†. Aquatic Toxicology, 2009, 93, 61-69.	4.0	109
128	Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malaria Journal, 2009, 8, 299.	2.3	233
129	Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in <i>Anopheles arabiensis</i> sampled from an area of cotton fields in Northern Cameroon. Molecular Ecology, 2008, 17, 1145-1155.	3.9	131
130	Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Molecular Biology, 2008, 17, 125-135.	2.0	92
131	Over expression of a Cytochrome P450 (CYP6P9) in a Major African Malaria Vector, <i>Anopheles Funestus,</i> Resistant to Pyrethroids. Insect Molecular Biology, 2008, 17, 19-25.	2.0	113
132	Characterization of knockdown resistance in DDT―and pyrethroidâ€resistant <i>Culex quinquefasciatus</i> populations from Sri Lanka. Tropical Medicine and International Health, 2008, 13, 548-555.	2.3	53
133	Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics, 2008, 9, 538.	2.8	256
134	Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2008, 38, 113-123.	2.7	289
135	Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology, 2008, 38, 540-551.	2.7	246
136	Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity. Journal of Structural Biology, 2008, 164, 228-235.	2.8	64
137	Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti. Acta Tropica, 2008, 108, 54-57.	2.0	54
138	Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infectious Diseases, The, 2008, 8, 387-389.	9.1	151
139	Modulation of <i>Anopheles gambiae</i> Epsilon glutathione transferase activity by plant natural products <i>in vitro</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 391-399.	5.2	12
140	Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids. PLoS Genetics, 2008, 4, e1000286.	3.5	285
141	Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti. Genetics, 2008, 180, 1137-1152.	2.9	75
142	A genome-wide analysis in <i>Anopheles gambiae</i> mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16215-16220.	7.1	133
143	Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Research, 2007, 35, 5922-5933.	14.5	115
144	The Aedes aegypti glutathione transferase family. Insect Biochemistry and Molecular Biology, 2007, 37, 1026-1035.	2.7	106

#	Article	IF	CITATIONS
145	Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malaria Journal, 2007, 6, 111.	2.3	273
146	Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Molecular Biology, 2007, 16, 315-324.	2.0	124
147	A mutation in the voltageâ€gated sodium channel gene associated with pyrethroid resistance in Latin American <i>Aedes aegypti</i> . Insect Molecular Biology, 2007, 16, 785-798.	2.0	288
148	Mapping a Quantitative Trait Locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus. BMC Genomics, 2007, 8, 34.	2.8	61
149	Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics, 2007, 8, 36.	2.8	126
150	Identification and analysis of Single Nucleotide Polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genomics, 2007, 8, 5.	2.8	94
151	Mutated sodium channel genes and elevated monooxygenases are found in pyrethroid resistant populations of Sri Lankan malaria vectors. Pesticide Biochemistry and Physiology, 2007, 88, 108-113.	3.6	24
152	Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochemistry and Molecular Biology, 2006, 36, 410-420.	2.7	49
153	Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Molecular Biology, 2006, 15, 321-327.	2.0	103
154	Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Molecular Biology, 2006, 15, 523-530.	2.0	63
155	A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 2006, 15, 615-636.	2.0	599
156	Characterization of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambiae and their response to oxidative stress. Biochemical Journal, 2005, 387, 879-888.	3.7	69
157	Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 2005, 14, 3-8.	2.0	811
158	Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Molecular Biology, 2005, 14, 509-521.	2.0	183
159	Glutathione Transferases. , 2005, , 383-402.		41
160	The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4080-4084.	7.1	282
161	An Integrated Genetic and Physical Map for the Malaria Vector Anopheles funestus. Genetics, 2005, 171, 1779-1787.	2.9	20
162	Isolation and sequence analysis of P450 genes from a pyrethroid resistant colony of the major malaria vectorAnopheles funestus. DNA Sequence, 2005, 16, 437-445.	0.7	18

#	Article	IF	CITATIONS
163	Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2005, 35, 861-871.	2.7	168
164	Mosquito Glutathione Transferases. Methods in Enzymology, 2005, 401, 226-241.	1.0	150
165	A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malaria Journal, 2005, 4, 16.	2.3	87
166	Genetic mapping of genes conferring permethrin resistance in the malaria vector, Anopheles gambiae. Insect Molecular Biology, 2004, 13, 379-386.	2.0	67
167	The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 2004, 34, 653-653.	2.7	0
168	The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 2004, 34, 653-665.	2.7	857
169	Malaria parasite and vector genomes: partners in crime. Trends in Parasitology, 2003, 19, 356-362.	3.3	8
170	The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics, 2003, 4, 35.	2.8	233
171	Structure of an insect δ-class glutathioneS-transferase from a DDT-resistant strain of the malaria vectorAnopheles gambiae. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2211-2217.	2.5	54
172	An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene, 2003, 318, 91-102.	2.2	195
173	Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochemical Journal, 2003, 373, 957-963.	3.7	166
174	Evolution of Supergene Families Associated with Insecticide Resistance. Science, 2002, 298, 179-181.	12.6	547
175	Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochemical Journal, 2002, 362, 329.	3.7	94
176	Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochemical Journal, 2002, 362, 329-337.	3.7	158
177	Structure and Evolution of mtanga, a Retrotransposon Actively Expressed on the Y Chromosome of the African Malaria Vector Anopheles gambiae. Molecular Biology and Evolution, 2002, 19, 149-162.	8.9	22
178	Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Molecular Biology, 2002, 11, 409-418.	2.0	62
179	Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 2001, 359, 295.	3.7	229
180	Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 2001, 359, 295-304.	3.7	313

#	Article	IF	CITATIONS
181	Crystallization of agGST1-6, a recombinant glutathioneS-transferase from a DDT-resistant strain ofAnopheles gambiae. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 134-136.	2.5	2
182	Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology, 2000, 9, 491-497.	2.0	536
183	Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Molecular Biology, 2000, 9, 499-507.	2.0	104
184	Insecticide Resistance in Insect Vectors of Human Disease. Annual Review of Entomology, 2000, 45, 371-391.	11.8	1,180
185	Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B. Insect Biochemistry and Molecular Biology, 1998, 28, 321-329.	2.7	47
186	The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1695-1699.	4.0	84
187	The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14284-14289.	7.1	64
188	Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of <i>Anopheles gambiae</i> . Biochemical Journal, 1997, 324, 97-102.	3.7	126
189	Cloning and Localization of a Glutathione S-transferase Class I Gene from Anopheles gambiae. Journal of Biological Chemistry, 1997, 272, 5464-5468.	3.4	46
190	Resistance to Insecticides in Insect Vectors of Disease:estα3, a Novel Amplified Esterase Associated with Amplifiedestβ1from Insecticide Resistant Strains of the MosquitoCulex quinquesfasciatus. Experimental Parasitology, 1997, 87, 253-259.	1.2	24
191	Piperonyl butoxide (PBO) combined with pyrethroids in long-lasting insecticidal nets (LLINs) to prevent malaria in Africa. The Cochrane Library, 0, , .	2.8	5