Richard W Wozniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295522/publications.pdf

Version: 2024-02-01

59 papers 3,946 citations

34 h-index 58 g-index

64 all docs

64
docs citations

64 times ranked 4214 citing authors

#	Article	IF	Citations
1	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154
2	Nodosome Inhibition as a Novel Broad-Spectrum Antiviral Strategy against Arboviruses, Enteroviruses, and SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 2021, 65, e0049121.	1.4	9
3	Phosphorylation-dependent mitotic SUMOylation drives nuclear envelope–chromatin interactions. Journal of Cell Biology, 2021, 220, .	2.3	13
4	Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import. Human Molecular Genetics, 2020, 29, 418-431.	1.4	13
5	SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28344-28354.	3.3	421
6	Recruitment of an Activated Gene to the Yeast Nuclear Pore Complex Requires Sumoylation. Frontiers in Genetics, 2020, 11, 174.	1.1	7
7	The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. American Journal of Human Genetics, 2020, 106, 143-152.	2.6	30
8	Passive diffusion through nuclear pore complexes regulates levels of the yeast SAGA and SLIK coactivators complexes. Journal of Cell Science, 2020, 133, .	1.2	6
9	Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein. Nucleus, 2018, 9, 1-8.	0.6	13
10	SUMO and Nucleocytoplasmic Transport. Advances in Experimental Medicine and Biology, 2017, 963, 111-126.	0.8	31
11	Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes. Journal of Cell Biology, 2017, 216, 3145-3159.	2.3	40
12	Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. ELife, 2017, 6, .	2.8	33
13	The Nuclear Transport Factor Kap121 Is Required for Stability of the Dam1 Complex and Mitotic Kinetochore Bi-orientation. Cell Reports, 2016, 14, 2440-2450.	2.9	4
14	Nucleoporins and chromatin metabolism. Current Opinion in Cell Biology, 2016, 40, 153-160.	2.6	44
15	The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites. PLoS Pathogens, 2016, 12, e1005428.	2.1	90
16	Functional Characterization of Nuclear Localization and Export Signals in Hepatitis C Virus Proteins and Their Role in the Membranous Web. PLoS ONE, 2014, 9, e114629.	1.1	26
17	Assessing Regulated Nuclear Transport in Saccharomyces cerevisiae. Methods in Cell Biology, 2014, 122, 311-330.	0.5	3
18	The multifunctional nuclear pore complex: a platform for controlling gene expression. Current Opinion in Cell Biology, 2014, 28, 46-53.	2.6	82

#	Article	IF	Citations
19	Sculpting the chromatin landscape: a role for nuclear pore complexes in gene silencing (238.2). FASEB Journal, 2014, 28, 238.2.	0.2	O
20	Mitosis-Specific Regulation of Nuclear Transport by the Spindle Assembly Checkpoint Protein Mad1p. Molecular Cell, 2013, 49, 109-120.	4.5	43
21	A Role for the Nucleoporin Nup170p in Chromatin Structure and Gene Silencing. Cell, 2013, 152, 969-983.	13.5	141
22	Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex. Journal of Cell Biology, 2013, 203, 187-196.	2.3	43
23	Hepatitis C Virus-Induced Cytoplasmic Organelles Use the Nuclear Transport Machinery to Establish an Environment Conducive to Virus Replication. PLoS Pathogens, 2013, 9, e1003744.	2.1	56
24	Dual personality of Mad1. Nucleus, 2013, 4, 367-373.	0.6	6
25	Structural evolution of the membrane-coating module of the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16498-16503.	3.3	24
26	Role of the nuclear envelope in genome organization and gene expression. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 147-166.	6.6	67
27	Nuclear transport and the mitotic apparatus: an evolving relationship. Cellular and Molecular Life Sciences, 2010, 67, 2215-2230.	2.4	85
28	Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. Journal of Cell Biology, 2010, 191, 505-521.	2.3	99
29	The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. Journal of Cell Biology, 2009, 185, 459-473.	2.3	78
30	The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. Journal of Cell Biology, 2009, 184, 21-29.	2.3	22
31	A Role for the Karyopherin Kap123p in Microtubule Stability. Traffic, 2009, 10, 1619-1634.	1.3	8
32	Cyclin-like Oscillations in Levels of the Nucleoporin Nup96 Control G1/S Progression. Developmental Cell, 2008, 15, 643-644.	3.1	6
33	Nup53 Is Required for Nuclear Envelope and Nuclear Pore Complex Assembly. Molecular Biology of the Cell, 2008, 19, 1753-1762.	0.9	67
34	The role of karyopherins in the regulated sumoylation of septins. Journal of Cell Biology, 2007, 177, 39-49.	2.3	71
35	Pore puzzle. Nature, 2007, 450, 621-622.	13.7	5
36	Nup53p is a Target of Two Mitotic Kinases, Cdk1p and Hrr25p. Traffic, 2007, 8, 647-660.	1.3	37

#	Article	IF	CITATIONS
37	The Conserved Transmembrane Nucleoporin NDC1 Is Required for Nuclear Pore Complex Assembly in Vertebrate Cells. Molecular Cell, 2006, 22, 93-103.	4. 5	210
38	Interactions between Mad1p and the Nuclear Transport Machinery in the YeastSaccharomyces cerevisiae. Molecular Biology of the Cell, 2005, 16, 4362-4374.	0.9	72
39	Vertebrate Nup53 Interacts with the Nuclear Lamina and Is Required for the Assembly of a Nup93-containing Complex. Molecular Biology of the Cell, 2005, 16, 2382-2394.	0.9	124
40	The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. Journal of Cell Biology, 2005, 171, 955-965.	2.3	114
41	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	6.0	6
42	Characterization of Karyopherin Cargoes Reveals Unique Mechanisms of Kap121p-Mediated Nuclear Import. Molecular and Cellular Biology, 2004, 24, 8487-8503.	1.1	46
43	New ways to skin a kap: mechanisms for controlling nuclear transport. Biochemistry and Cell Biology, 2004, 82, 618-625.	0.9	9
44	Nuclear pore complexes. Current Biology, 2003, 13, R169.	1.8	7
45	Nuclear Pores: Sowing the Seeds of Assembly on the Chromatin Landscape. Current Biology, 2003, 13, R970-R972.	1.8	11
46	Cell Cycle Regulated Transport Controlled by Alterations in the Nuclear Pore Complex. Cell, 2003, 115, 813-823.	13.5	140
47	Kap121p-Mediated Nuclear Import Is Required for Mating and Cellular Differentiation in Yeast. Molecular and Cellular Biology, 2002, 22, 2544-2555.	1.1	43
48	The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. Journal of Cell Biology, 2002, 159, 807-819.	2.3	147
49	Karyopherins in nuclear pore biogenesis. Journal of Cell Biology, 2002, 159, 267-278.	2.3	76
50	Rrb1p, a Yeast Nuclear WD-Repeat Protein Involved in the Regulation of Ribosome Biosynthesis. Molecular and Cellular Biology, 2001, 21, 1260-1271.	1.1	69
51	A Link between the Synthesis of Nucleoporins and the Biogenesis of the Nuclear Envelope. Journal of Cell Biology, 2001, 153, 709-724.	2.3	133
52	Nup2p Dynamically Associates with the Distal Regions of the Yeast Nuclear Pore Complex. Journal of Cell Biology, 2001, 153, 1465-1478.	2.3	149
53	The dynamics of karyopherin-mediated nuclear transport. Biochemistry and Cell Biology, 2001, 79, 603-612.	0.9	27
54	Proteomics for the pore. Nature, 2000, 403, 835-836.	13.7	34

#	Article	IF	CITATIONS
55	Yeast Nucleoporins Involved in Passive Nuclear Envelope Permeability. Journal of Cell Biology, 2000, 149, 1027-1038.	2.3	104
56	Topology and Functional Domains of the Yeast Pore Membrane Protein Pom152p. Journal of Biological Chemistry, 1999, 274, 5252-5258.	1.6	36
57	Karyopherins and kissing cousins. Trends in Cell Biology, 1998, 8, 184-188.	3.6	212
58	Specific Binding of the Karyopherin Kap121p to a Subunit of the Nuclear Pore Complex Containing Nup53p, Nup59p, and Nup170p. Journal of Cell Biology, 1998, 143, 1813-1830.	2.3	152
59	Cell Cycle-Dependent Phosphorylation of Nucleoporins and Nuclear Pore Membrane Protein Gp210. Biochemistry, 1996, 35, 8035-8044.	1.2	147