Wen-Yu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295363/publications.pdf

Version: 2024-02-01

41344 20961 13,646 147 49 115 citations h-index g-index papers 150 150 150 17732 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	12.6	2,376
2	On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters, 2007, 7, 2080-2088.	9.1	1,415
3	Sub-Two Nanometer Single Crystal Au Nanowires. Nano Letters, 2008, 8, 2041-2044.	9.1	538
4	Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation. Journal of the American Chemical Society, 2009, 131, 5816-5822.	13.7	480
5	Nanocrystal bilayer for tandem catalysis. Nature Chemistry, 2011, 3, 372-376.	13.6	466
6	Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Letters, 2010, 10, 2709-2713.	9.1	379
7	Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 2014, 4, 1340-1348.	11.2	367
8	Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nature Communications, 2018, 9, 2785.	12.8	353
9	Roomâ€Temperature Formation of Hollow Cu ₂ 0 Nanoparticles. Advanced Materials, 2010, 22, 1910-1914.	21.0	308
10	Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2010, 2, 36-41.	13.6	277
11	Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. Journal of the American Chemical Society, 2017, 139, 4762-4768.	13.7	265
12	Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 2020, 3, 893-901.	34.4	262
13	Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation. Nano Letters, 2008, 8, 2027-2034.	9.1	254
14	Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes. Journal of the American Chemical Society, 2008, 130, 5868-5869.	13.7	226
15	Structure Sensitivity of Carbonâ´'Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica. Journal of the American Chemical Society, 2008, 130, 14026-14027.	13.7	226
16	Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 2014, 4, 3490-3497.	11.2	187
17	Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. Journal of Catalysis, 2009, 265, 209-215.	6.2	170
18	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks. ACS Catalysis, 2016, 6, 3461-3468.	11.2	152

#	Article	IF	CITATIONS
19	A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation. ACS Catalysis, 2016, 6, 1754-1763.	11.2	148
20	Defect-Rich 2D Material Networks for Advanced Oxygen Evolution Catalysts. ACS Energy Letters, 2019, 4, 328-336.	17.4	148
21	Conversion of Levulinic Acid to \hat{I}^3 -Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS Catalysis, 2016, 6, 593-599.	11.2	145
22	The Effect of Plasmon Field on the Coherent Lattice Phonon Oscillation in Electron-Beam Fabricated Gold Nanoparticle Pairs. Nano Letters, 2007, 7, 3227-3234.	9.1	141
23	In Situ Formed Pt ₃ Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions. Nano Letters, 2019, 19, 5102-5108.	9.1	133
24	Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. Nano Letters, 2020, 20, 136-144.	9.1	129
25	Self-Organized Ultrathin Oxide Nanocrystals. Nano Letters, 2009, 9, 1260-1264.	9.1	121
26	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	3.8	112
27	Furan Hydrogenation over $Pt(111)$ and $Pt(100)$ Single-Crystal Surfaces and Pt Nanoparticles from 1 to 7 nm: A Kinetic and Sum Frequency Generation Vibrational Spectroscopy Study. Journal of the American Chemical Society, 2010, 132, 13088-13095.	13.7	108
28	Highly Active Heterogeneous Palladium Nanoparticle Catalysts for Homogeneous Electrophilic Reactions in Solution and the Utilization of a Continuous Flow Reactor. Journal of the American Chemical Society, 2010, 132, 16771-16773.	13.7	104
29	In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nature Catalysis, 2018, 1, 135-140.	34.4	99
30	Effect of the Lattice Crystallinity on the Electronâ^Phonon Relaxation Rates in Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 10751-10757.	3.1	94
31	A Pt-Cluster-Based Heterogeneous Catalyst for Homogeneous Catalytic Reactions: X-ray Absorption Spectroscopy and Reaction Kinetic Studies of Their Activity and Stability against Leaching. Journal of the American Chemical Society, 2011, 133, 13527-13533.	13.7	94
32	Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 2018, 8, 8396-8405.	11.2	93
33	The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays:  The Effect of Interparticle Coupling. Journal of Physical Chemistry B, 2005, 109, 18881-18888.	2.6	92
34	Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Research, 2011, 4, 61-71.	10.4	91
35	Using a Multiâ€Shelled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€toâ€Host and Guestâ€toâ€Guest Interactions. Angewandte Chemie - International Edition, 2018, 57, 2110-2114.	13.8	91
36	Impact of Linker Engineering on the Catalytic Activity of Metal–Organic Frameworks Containing Pd(II)–Bipyridine Complexes. ACS Catalysis, 2016, 6, 6324-6328.	11.2	89

#	Article	IF	CITATIONS
37	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16371-16375.	13.8	87
38	Coherent Vibrational Oscillation in Gold Prismatic Monolayer Periodic Nanoparticle Arrays. Nano Letters, 2004, 4, 1741-1747.	9.1	86
39	Catalysis on Singly Dispersed Rh Atoms Anchored on an Inert Support. ACS Catalysis, 2018, 8, 110-121.	11.2	81
40	DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2016, 7, 2322-2327.	4.6	77
41	Silicaâ€Encapsulated Ptâ€Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie - International Edition, 2017, 56, 3925-3929.	13.8	73
42	Time-Resolved Investigation of the Acoustic Vibration of a Single Gold Nanoprism Pair. Journal of Physical Chemistry C, 2008, 112, 11231-11235.	3.1	68
43	Spectroscopic Study of Platinum and Rhodium Dendrimer (PAMAM G4OH) Compounds: Structure and Stability. Journal of Physical Chemistry C, 2011, 115, 4757-4767.	3.1	68
44	Near-Monodisperse Niâ^'Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H ₂ Generation. Journal of Physical Chemistry C, 2008, 112, 12092-12095.	3.1	67
45	Rh _{1â^x} Pd _x nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Physical Chemistry Chemical Physics, 2011, 13, 2556-2562.	2.8	66
46	Metal–Organicâ€Frameworkâ€Derived Carbons: Applications as Solidâ€Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis. Chemistry - A European Journal, 2017, 23, 4266-4270.	3.3	66
47	Dispersion of Potassium Nitrate and the Resulting Strong Basicity on Zirconia. Chemistry of Materials, 2001, 13, 670-677.	6.7	64
48	Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. Journal of the American Chemical Society, 2022, 144, 5323-5334.	13.7	60
49	Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes. Journal of Catalysis, 2017, 356, 307-314.	6.2	53
50	Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. Journal of Applied Physics, 2005, 98, 114301.	2.5	50
51	Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6186-6192.	10.3	50
52	Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chemical Reviews, 2019, 119, 6670-6768.	47.7	50
53	Synthesis and characterization of potassium-modified alumina superbases. Physical Chemistry Chemical Physics, 2001, 3, 2537-2543.	2.8	46
54	Intermetallic NaAu ₂ as a Heterogeneous Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society, 2013, 135, 9592-9595.	13.7	46

#	Article	IF	CITATIONS
55	Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11, 3469-3479.	10.4	46
56	Gold Nanoparticles Propulsion from Surface Fueled by Absorption of Femtosecond Laser Pulse at Their Surface Plasmon Resonance. Journal of the American Chemical Society, 2006, 128, 13330-13331.	13.7	45
57	Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. CheM, 2019, 5, 1235-1247.	11.7	45
58	Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nature Communications, 2019, 10, 4815.	12.8	44
59	Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111)- and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes. Langmuir, 2010, 26, 16463-16468.	3.5	43
60	A Three-Dimensional Microporous Metal–Metalloporphyrin Framework. Inorganic Chemistry, 2015, 54, 200-204.	4.0	42
61	Spectroscopy Identification of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 23254-23260.	8.0	41
62	Identifying the Molecular Edge Termination of Exfoliated Hexagonal Boron Nitride Nanosheets with Solid-State NMR Spectroscopy and Plane-Wave DFT Calculations. Chemistry of Materials, 2020, 32, 3109-3121.	6.7	41
63	Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO. Catalysis Letters, 2009, 132, 317-322.	2.6	39
64	Silicaâ€Encapsulated Ptâ€Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie, 2017, 129, 3983-3987.	2.0	37
65	Indirect detection of infinite-speed MAS solid-state NMR spectra. Journal of Magnetic Resonance, 2017, 276, 95-102.	2.1	36
66	Superbase derived from zirconia-supported potassium nitrate. Materials Letters, 2000, 46, 198-204.	2.6	35
67	Selective Host–Guest Interaction between Metal lons and Metal–Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid‧tate NMR Spectroscopy. Chemistry - A European Journal, 2014, 20, 16308-16313.	3.3	35
68	Highâ€Temperatureâ€Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells. ChemSusChem, 2013, 6, 1915-1922.	6.8	34
69	Single molecule fluorescence imaging of nanoconfinement in porous materials. Chemical Society Reviews, 2021, 50, 6483-6506.	38.1	33
70	Creating an Aligned Interface between Nanoparticles and MOFs by Concurrent Replacement of Capping Agents. Journal of the American Chemical Society, 2021, 143, 5182-5190.	13.7	32
71	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie - International Edition, 2021, 60, 18309-18317.	13.8	32
72	Surface-Mediated Hyperpolarization of Liquid Water from Parahydrogen. CheM, 2018, 4, 1387-1403.	11.7	31

#	Article	IF	CITATIONS
73	Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. Journal of the American Chemical Society, 2020, 142, 13305-13309.	13.7	31
74	<i>t</i> ₁ -Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 20815-20828.	2.8	31
75	Rh1â^'x Pd x Nanoparticle Composition Dependence in CO Oxidation by NO. Catalysis Letters, 2011, 141, 235-241.	2.6	30
76	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 16589-16593.	2.0	30
77	Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. Journal of Catalysis, 2019, 374, 136-142.	6.2	29
78	Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catalysis, 2020, 10, 5707-5714.	11.2	29
79	Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene. Journal of the American Chemical Society, 2021, 143, 4213-4223.	13.7	28
80	Intermetallic Nanocatalyst for Highly Active Heterogeneous Hydroformylation. Journal of the American Chemical Society, 2021, 143, 20907-20915.	13.7	28
81	Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces. Solid State Nuclear Magnetic Resonance, 2017, 87, 38-44.	2.3	27
82	Transition metal-like carbocatalyst. Nature Communications, 2020, 11, 4091.	12.8	27
83	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Interfaces, 2020, 12, 23002-23009.	8.0	27
84	Green synthesis of amphiphilic carbon dots from organic solvents: application in fluorescent polymer composites and bio-imaging. RSC Advances, 2018, 8, 12556-12561.	3.6	26
85	Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. Nanoscale, 2019, 11, 5336-5345.	5.6	25
86	Geometryâ€Assisted Threeâ€Dimensional Superlocalization Imaging of Singleâ€Molecule Catalysis on Modular Multilayer Nanocatalysts. Angewandte Chemie - International Edition, 2014, 53, 12865-12869.	13.8	24
87	In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks. Journal of Physical Chemistry B, 2014, 118, 14168-14176.	2.6	22
88	MOF-253-Pd(OAc) ₂ : a recyclable MOF for transition-metal catalysis in water. RSC Advances, 2016, 6, 56330-56334.	3.6	22
89	Allylic oxidation of olefins with a manganese-based metal–organic framework. Green Chemistry, 2019, 21, 3629-3636.	9.0	22
90	Strainâ€Enhanced Metallic Intermixing in Shapeâ€Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angewandte Chemie - International Edition, 2020, 59, 10574-10580.	13.8	22

#	Article	IF	CITATIONS
91	Using a Multiâ€Shelled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€toâ€Host and Guestâ€toâ€Guest Interactions. Angewandte Chemie, 2018, 130, 2132-2136.	2.0	22
92	An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale, 2015, 7, 16721-16728.	5.6	21
93	Using silica films and powders modified with benzophenone to photoreduce silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 385-393.	3.9	20
94	Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process. Surface Science, 2016, 648, 299-306.	1.9	20
95	Aerobic oxidation of the C–H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21, 1461-1466.	9.0	20
96	The impact of synthetic method on the catalytic application of intermetallic nanoparticles. Nanoscale, 2020, 12, 18545-18562.	5.6	20
97	Hydrazoneâ€Linked Heptazine Polymeric Carbon Nitrides for Synergistic Visibleâ€Lightâ€Driven Catalysis. Chemistry - A European Journal, 2020, 26, 7358-7364.	3.3	20
98	Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 940-945.	2.6	19
99	Probing the Interface between Encapsulated Nanoparticles and Metal–Organic Frameworks for Catalytic Selectivity Control. Chemistry of Materials, 2021, 33, 1946-1953.	6.7	19
100	Gigahertz Optical Modulation Resulting from Coherent Lattice Oscillations Induced by Femtosecond Laser Pumping of 2D Photonic Crystals of Goldâ€Capped Polystyrene Microspheres. Advanced Materials, 2008, 20, 733-737.	21.0	18
101	Synthesis of Monodisperse Palladium Nanoclusters Using Metal–Organic Frameworks as Sacrificial Templates. ChemNanoMat, 2016, 2, 810-815.	2.8	18
102	Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles. European Physical Journal: Special Topics, 2008, 153, 325-333.	2.6	16
103	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	3.7	16
104	MXeneâ€Supported, Atomicâ€Layered Iridium Catalysts Created by Nanoparticle Reâ€Dispersion for Efficient Alkaline Hydrogen Evolution. Small, 2022, 18, e2105226.	10.0	16
105	Influence of reaction with XeF2 on surface adhesion of Al and Al2O3 surfaces. Applied Physics Letters, 2008, 93, 141905.	3.3	15
106	Room-Temperature Tandem Condensation-Hydrogenation Catalyzed by Porous C3N4 Nanosheet-Supported Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 3356-3363.	6.7	15
107	Subâ€5 nm Intermetallic Nanoparticles Confined in Mesoporous Silica Wells for Selective Hydrogenation of Acetylene to Ethylene. ChemCatChem, 2020, 12, 3022-3029.	3.7	14
108	Cyclopropane Hydrogenation vs Isomerization over Pt and Pt–Sn Intermetallic Nanoparticle Catalysts: A Parahydrogen Spin-Labeling Study. Journal of Physical Chemistry C, 2020, 124, 8304-8309.	3.1	14

#	Article	IF	Citations
109	A Pd(II)â€Functionalized Covalent Organic Framework for Catalytic Conjugate Additions of Arylboronic Acids to β,βâ€Disubstituted Enones. ChemCatChem, 2019, 11, 4286-4290.	3.7	13
110	An inexpensive apparatus for up to 97% continuous-flow parahydrogen enrichment using liquid helium. Journal of Magnetic Resonance, 2020, 321, 106869.	2.1	13
111	Precisely Controlled Synthesis of Hybrid Intermetallic–Metal Nanoparticles for Nitrate Electroreduction. ACS Applied Materials & Samp; Interfaces, 0, , .	8.0	13
112	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction. Small, 2022, 18, e2107799.	10.0	13
113	Pulsed laser photothermal annealing and ablation of plasmonic nanoparticles. European Physical Journal: Special Topics, 2008, 153, 223-230.	2.6	12
114	Microtribological behavior of Mo and W nanoparticle/graphene composites. Wear, 2018, 414-415, 310-316.	3.1	12
115	Tandem Condensationâ€Hydrogenation to Produce Alkylated Nitriles Using Bifunctional Catalysts: Platinum Nanoparticles Supported on MOFâ€Derived Carbon. ChemCatChem, 2020, 12, 602-608.	3.7	12
116	Pairwise semi-hydrogenation of alkyne to <i>cis</i> -alkene on platinum-tin intermetallic compounds. Nanoscale, 2020, 12, 8519-8524.	5.6	12
117	Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. Solid State Nuclear Magnetic Resonance, 2019, 98, 12-18.	2.3	11
118	Palladium–gold bimetallic nanoparticle catalysts prepared by "controlled releaseâ€from metal-loaded interfacially cross-linked reverse micelles. New Journal of Chemistry, 2015, 39, 2459-2466.	2.8	10
119	Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. Journal of Chemical Physics, 2022, 156, 124112.	3.0	10
120	Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization-Enhanced 29Si MAS NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 7299-7307.	3.1	9
121	Reshaping of Truncated Pd Nanocubes: Energetic and Kinetic Analysis Integrating Transmission Electron Microscopy with Atomistic-Level and Coarse-Grained Modeling. ACS Nano, 2020, 14, 8551-8561.	14.6	9
122	Regulating the Catalytic Activity of Pd Nanoparticles by Confinement in Ordered Mesoporous Supports. ChemCatChem, 2021, 13, 539-542.	3.7	9
123	Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles. Science Advances, 2022, 8, eabl9478.	10.3	9
124	Silica-Encapsulated Intermetallic Nanoparticles for Highly Active and Selective Heterogeneous Catalysis. Accounts of Materials Research, 2021, 2, 1190-1202.	11.7	8
125	Synthesis and Characterization of Mesoporous Silica Nanoparticles Loaded with Pt Catalysts. Catalysts, 2022, 12, 183.	3.5	8
126	Enhanced Chemoselectivity in Pt–Fe@mSiO2 Bimetallic Nanoparticles in the Absence of Surface Modifying Ligands. Topics in Catalysis, 2018, 61, 940-948.	2.8	7

#	Article	IF	Citations
127	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie, 2021, 133, 18457-18465.	2.0	7
128	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	10.4	7
129	Geometryâ€Assisted Threeâ€Dimensional Superlocalization Imaging of Singleâ€Molecule Catalysis on Modular Multilayer Nanocatalysts. Angewandte Chemie, 2014, 126, 13079-13083.	2.0	6
130	The (111) Surface of NaAu ₂ : Structure, Composition, and Stability. Inorganic Chemistry, 2015, 54, 1159-1164.	4.0	6
131	Self-Regulated Porosity and Reactivity in Mesoporous Heterogeneous Catalysts Using Colloidal Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 18410-18416.	3.1	5
132	Atomic-Level Structure of Mesoporous Hexagonal Boron Nitride Determined by High-Resolution Solid-State Multinuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations. Chemistry of Materials, 0, , .	6.7	5
133	Mesoporous Silica Encapsulated Platinum–Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 4125-4132.	4.6	4
134	t1-noise elimination by continuous chemical shift anisotropy refocusing. Solid State Nuclear Magnetic Resonance, 2022, 120, 101807.	2.3	4
135	Dendrimer-Encapsulated Metal Nanoparticles: Synthesis and Application in Catalysis., 2014,, 65-91.		3
136	Interaction of oxygen with the (111) surface of NaAu2. Surface Science, 2016, 650, 167-176.	1.9	3
137	Tandem Synthesis of ϵâ€Caprolactam from Cyclohexanone by an Acidified Metalâ€organic Framework. ChemCatChem, 2021, 13, 3084-3089.	3.7	3
138	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction (Small 16/2022). Small, 2022, 18, .	10.0	3
139	Path Less Traveled: A Contemporary Twist on Synthesis and Traditional Structure Solution of Metastable LiNi ₁₂ 8 ₈ . ACS Materials Au, 0, , .	6.0	3
140	Strainâ€Enhanced Metallic Intermixing in Shapeâ€Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angewandte Chemie, 2020, 132, 10661-10667.	2.0	2
141	In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration. Chemical Communications, 2021, 57, 5454-5457.	4.1	2
142	Shape Stability of Truncated Octahedral fcc Metal Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51954-51961.	8.0	2
143	Optically detected coherent picosecond lattice oscillations in two dimensional arrays of gold nanocrystals of different sizes and shapes induced by femtosecond laser pulses., 2005, 5927, 592701.		1
144	Ultrafast electronic and lattice processes of plasmonic nanoparticles of different shape. , 2006, , 260-273.		1

#	Article	IF	CITATIONS
145	Structure evolution of single-site Pt in a metal–organic framework. Journal of Chemical Physics, 2021, 154, 094710.	3.0	1
146	Laâ€Hâ€zeolites: efficient catalysts for acetic acid ketonic decarboxylation and esterification. Journal of Chemical Technology and Biotechnology, 2021, 96, 2022-2032.	3.2	1
147	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	4.1	1