
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8293937/publications.pdf Version: 2024-02-01

HANNS LOCHMÃI/LLER

#	Article	IF	CITATIONS
1	The Human Phenotype Ontology in 2017. Nucleic Acids Research, 2017, 45, D865-D876.	14.5	699
2	Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 2019, 47, D1018-D1027.	14.5	539
3	The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations. Human Mutation, 2015, 36, 395-402.	2.5	507
4	Phenotypic spectrum associated with mutations of the mitochondrial polymerase gene. Brain, 2006, 129, 1674-1684.	7.6	397
5	Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy – a literature review. Orphanet Journal of Rare Diseases, 2017, 12, 124.	2.7	391
6	Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genetics, 2005, 37, 1207-1209.	21.4	390
7	International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. American Journal of Human Genetics, 2017, 100, 695-705.	6.2	305
8	The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain, 2007, 130, 2037-2044.	7.6	298
9	Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Human Genetics, 2006, 119, 422-428.	3.8	292
10	A Mutation in the Dimerization Domain of Filamin C Causes a Novel Type of Autosomal Dominant Myofibrillar Myopathy. American Journal of Human Genetics, 2005, 77, 297-304.	6.2	268
11	Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nature Genetics, 2009, 41, 833-837.	21.4	260
12	A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy. Brain, 2011, 134, 171-182.	7.6	254
13	Dok-7 Mutations Underlie a Neuromuscular Junction Synaptopathy. Science, 2006, 313, 1975-1978.	12.6	247
14	SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nature Genetics, 2009, 41, 654-656.	21.4	233
15	Mutations in SIL1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nature Genetics, 2005, 37, 1312-1314.	21.4	232
16	Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nature Genetics, 2010, 42, 160-164.	21.4	228
17	An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature, 2001, 413, 302-307.	27.8	222
18	Late onset Pompe disease: Clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscular Disorders, 2007, 17, 698-706.	0.6	208

Hanns LochmÃ¹/4ller

#	Article	IF	CITATIONS
19	Risk of developing a mitochondrial DNA deletion disorder. Lancet, The, 2004, 364, 592-596.	13.7	201
20	Mutations and polymorphisms of the skeletal muscle α-actin gene (<i>ACTA1</i>). Human Mutation, 2009, 30, 1267-1277.	2.5	198
21	Autosomal-Dominant Distal Myopathy Associated with a Recurrent Missense Mutation in the Gene Encoding the Nuclear Matrix Protein, Matrin 3. American Journal of Human Genetics, 2009, 84, 511-518.	6.2	161
22	RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research. Journal of General Internal Medicine, 2014, 29, 780-787.	2.6	159
23	Dystrophin Expression in Muscles of mdx Mice After Adenovirus-Mediated <i>In Vivo</i> Gene Transfer. Human Gene Therapy, 1996, 7, 129-140.	2.7	158
24	Future of Rare Diseases Research 2017–2027: An IRDiRC Perspective. Clinical and Translational Science, 2018, 11, 21-27.	3.1	154
25	Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect. American Journal of Human Genetics, 2011, 88, 162-172.	6.2	153
26	The burden of Duchenne muscular dystrophy. Neurology, 2014, 83, 529-536.	1.1	149
27	Mutation History of the Roma/Gypsies. American Journal of Human Genetics, 2004, 75, 596-609.	6.2	148
28	Pathological consequences of VCP mutations on human striated muscle. Brain, 2007, 130, 381-393.	7.6	148
29	An X-Linked Myopathy with Postural Muscle Atrophy and Generalized Hypertrophy, Termed XMPMA, Is Caused by Mutations in FHL1. American Journal of Human Genetics, 2008, 82, 88-99.	6.2	148
30	Quantitative Muscle MRI as an Assessment Tool for Monitoring Disease Progression in LGMD2I: A Multicentre Longitudinal Study. PLoS ONE, 2013, 8, e70993.	2.5	148
31	Escobar Syndrome Is a Prenatal Myasthenia Caused by Disruption of the Acetylcholine Receptor Fetal Î ³ Subunit. American Journal of Human Genetics, 2006, 79, 303-312.	6.2	146
32	Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Human Mutation, 2012, 33, 981-988.	2.5	145
33	Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain, 2007, 130, 1497-1506.	7.6	143
34	Mitochondrial Phosphate–Carrier Deficiency: A Novel Disorder of Oxidative Phosphorylation. American Journal of Human Genetics, 2007, 80, 478-484.	6.2	142
35	Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Annals of Neurology, 2003, 54, 719-724.	5.3	141
36	Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs. Journal of Neurology, 2005, 252, 538-547.	3.6	136

#	Article	IF	CITATIONS
37	The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nature Cell Biology, 2007, 9, 379-390.	10.3	135
38	Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain, 2008, 131, 747-759.	7.6	134
39	Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Human Molecular Genetics, 2013, 22, 4368-4382.	2.9	134
40	Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain, 2007, 130, 3250-3264.	7.6	132
41	Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscular Disorders, 2011, 21, 569-578.	0.6	132
42	Safety and Treatment Effects of Nusinersen in Longstanding Adult 5q-SMA Type 3 – A Prospective Observational Study. Journal of Neuromuscular Diseases, 2019, 6, 453-465.	2.6	132
43	Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. European Journal of Epidemiology, 2020, 35, 643-653.	5.7	132
44	Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nature Genetics, 2003, 35, 185-189.	21.4	129
45	Targeted Next-Generation Sequencing of a 12.5 Mb Homozygous Region Reveals ANO10 Mutations in Patients with Autosomal-Recessive Cerebellar Ataxia. American Journal of Human Genetics, 2010, 87, 813-819.	6.2	125
46	Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. Journal of Neuromuscular Diseases, 2017, 4, 293-306.	2.6	125
47	Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 746-750.	7.1	123
48	EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nature Communications, 2014, 5, 4287.	12.8	120
49	Congenital myasthenic syndromes due to mutations in <i>ALG2</i> and <i>ALG14</i> . Brain, 2013, 136, 944-956.	7.6	117
50	Recommendations for Improving the Quality of Rare Disease Registries. International Journal of Environmental Research and Public Health, 2018, 15, 1644.	2.6	116
51	Factors Influencing the Efficacy, Longevity, and Safety of Electroporation-Assisted Plasmid-Based Gene Transfer into Mouse Muscles. Molecular Therapy, 2004, 10, 447-455.	8.2	115
52	Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain, 2003, 126, 1026-1035.	7.6	112
53	Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain, 2009, 132, 3165-3174.	7.6	112
54	International Charter of principles for sharing bio-specimens and data. European Journal of Human Genetics, 2015, 23, 721-728.	2.8	112

#	Article	IF	CITATIONS
55	Mutations in <i>GMPPB</i> cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain, 2015, 138, 2493-2504.	7.6	111
56	Missense mutations of ACTA1 cause dominant congenital myopathy with cores. Journal of Medical Genetics, 2004, 41, 842-848.	3.2	110
57	Affinity proteomics within rare diseases: a <scp>BIO</scp> â€ <scp>NMD</scp> study for blood biomarkers of muscular dystrophies. EMBO Molecular Medicine, 2014, 6, 918-936.	6.9	105
58	Limb–girdle muscular dystrophies. Current Opinion in Neurology, 2008, 21, 576-584.	3.6	104
59	Progress in Rare Diseases Research 2010–2016: An IRDiRC Perspective. Clinical and Translational Science, 2018, 11, 11-20.	3.1	104
60	EFNS guideline on diagnosis and management of limb girdle muscular dystrophies. European Journal of Neurology, 2007, 14, 1305-1312.	3.3	103
61	Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Annals of Neurology, 2005, 57, 415-424.	5.3	99
62	Adult-onset cerebellar ataxia due to mutations in <i>CABC1/ADCK3</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 174-178.	1.9	99
63	Congenital myasthenic syndromes: Achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: A study of 680 patients. Human Mutation, 2012, 33, 1474-1484.	2.5	99
64	A multi-source approach to determine SMA incidence and research ready population. Journal of Neurology, 2017, 264, 1465-1473.	3.6	98
65	Commonality ofTRIM32mutation in causing sarcotubular myopathy and LGMD2H. Annals of Neurology, 2005, 57, 591-595.	5.3	96
66	Synaptotagmin 2 Mutations Cause an Autosomal-Dominant Form of Lambert-Eaton Myasthenic Syndrome and Nonprogressive Motor Neuropathy. American Journal of Human Genetics, 2014, 95, 332-339.	6.2	96
67	Human muscle cells express a B7â€related molecule, B7â€H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB Journal, 2003, 17, 1-16.	0.5	95
68	Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial. Lancet Neurology, The, 2018, 17, 671-680.	10.2	95
69	Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy. Human Molecular Genetics, 2009, 18, 1976-1989.	2.9	94
70	The TREAT-NMD Duchenne Muscular Dystrophy Registries: Conception, Design, and Utilization by Industry and Academia. Human Mutation, 2013, 34, 1449-1457.	2.5	94
71	No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochemical and Biophysical Research Communications, 2005, 328, 221-226.	2.1	93
72	Scapuloperoneal syndrome type Kaeser and a wide phenotypic spectrum of adult-onset, dominant myopathies are associated with the desmin mutation R350P. Brain, 2007, 130, 1485-1496.	7.6	92

#	Article	IF	CITATIONS
73	Expression of the E6 and E7 Genes of Human Papillomavirus (HPV16) Extends the Life Span of Human Myoblasts. Experimental Cell Research, 1999, 248, 186-193.	2.6	91
74	Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation. Neuromuscular Disorders, 2010, 20, 438-442.	0.6	90
75	Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Human Molecular Genetics, 2011, 20, 4334-4344.	2.9	89
76	Dysferlin associates with the developing Tâ€ŧubule system in rodent and human skeletal muscle. Muscle and Nerve, 2010, 41, 166-173.	2.2	87
77	The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. Journal of Neurology, 2011, 258, 1987-1997.	3.6	87
78	A heterozygous 21-bp deletion in <i>CAPN3</i> causes dominantly inherited limb girdle muscular dystrophy. Brain, 2016, 139, 2154-2163.	7.6	87
79	Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 2014, 137, 2429-2443.	7.6	86
80	Validation of genetic modifiers for Duchenne muscular dystrophy: a multicentre study assessing <i>SPP1</i> and <i>LTBP4</i> variants. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1060-1065.	1.9	86
81	Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle and Nerve, 2004, 29, 275-281.	2.2	82
82	Healthâ€related quality of life in patients with Duchenne muscular dystrophy: a multinational, crossâ€sectional study. Developmental Medicine and Child Neurology, 2016, 58, 508-515.	2.1	82
83	Quantifying the burden of caregiving in Duchenne muscular dystrophy. Journal of Neurology, 2016, 263, 906-915.	3.6	82
84	The principles of gene therapy for the nervous system. Trends in Neurosciences, 1996, 19, 49-54.	8.6	81
85	Expression of tollâ€like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates ILâ€8 release, and upâ€regulation of NKG2Dâ€ligands. FASEB Journal, 2006, 20, 118-120.	0.5	81
86	The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscular Disorders, 2010, 20, 255-259.	0.6	81
87	Genetic heterogeneity of motor neuropathies. Neurology, 2017, 88, 1226-1234.	1.1	81
88	Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1071-1081.	1.9	81
89	Quantitative Magnetic Resonance Imaging in Limb-Girdle Muscular Dystrophy 21: A Multinational Cross-Sectional Study. PLoS ONE, 2014, 9, e90377.	2.5	81
90	The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain, 2003, 126, 176-185.	7.6	80

#	Article	IF	CITATIONS
91	New aspects on patients affected by dysferlin deficient muscular dystrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 946-953.	1.9	79
92	Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Human Molecular Genetics, 2014, 23, 2353-2363.	2.9	79
93	Recessive Mutations in the α3 (VI) Collagen Gene COL6A3 Cause Early-Onset Isolated Dystonia. American Journal of Human Genetics, 2015, 96, 883-893.	6.2	79
94	Muscle MRI findings in limb girdle muscular dystrophy type 2L. Neuromuscular Disorders, 2012, 22, S122-S129.	0.6	77
95	Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial. Orphanet Journal of Rare Diseases, 2013, 8, 26.	2.7	77
96	Mapping the differences in care for 5,000 Spinal Muscular Atrophy patients, a survey of 24 national registries in North America, Australasia and Europe. Journal of Neurology, 2014, 261, 152-163.	3.6	76
97	Homozygous mutations incaveolin-3cause a severe form of rippling muscle disease. Annals of Neurology, 2003, 53, 512-520.	5.3	75
98	The Clinical Outcome Study for dysferlinopathy. Neurology: Genetics, 2016, 2, e89.	1.9	75
99	ANO10 mutations cause ataxia and coenzyme Q10 deficiency. Journal of Neurology, 2014, 261, 2192-2198.	3.6	74
100	Mutation in dystrophin-encoding gene affects energy metabolism in mouse myoblasts. Biochemical and Biophysical Research Communications, 2009, 386, 463-466.	2.1	73
101	Fibronectin is a serum biomarker for <scp>D</scp> uchenne muscular dystrophy. Proteomics - Clinical Applications, 2014, 8, 269-278.	1.6	73
102	Differential Short-Term Transduction Efficiency of Adult versus Newborn Mouse Tissues by Adenoviral Recombinants. Experimental and Molecular Pathology, 1995, 62, 131-143.	2.1	72
103	High-Level Dystrophin Expression after Adenovirus-Mediated Dystrophin Minigene Transfer to Skeletal Muscle of Dystrophic Dogs: Prolongation of Expression with Immunosuppression. Human Gene Therapy, 1998, 9, 629-634.	2.7	72
104	Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Experimental Cell Research, 2005, 304, 365-379.	2.6	72
105	Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. Journal of Neurology, 2012, 259, 838-850.	3.6	72
106	Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 547-563.	7.3	72
107	Titin founder mutation is a common cause of myofibrillar myopathy with early respiratory failure. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 331-338.	1.9	71
108	Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 241-255.	2.6	71

#	Article	IF	CITATIONS
109	Association Study of Exon Variants in the NF-κB and TGFβ Pathways Identifies CD40 as a Modifier of Duchenne Muscular Dystrophy. American Journal of Human Genetics, 2016, 99, 1163-1171.	6.2	71
110	Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology, 2019, 93, e995-e1009.	1.1	71
111	Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain, 2008, 131, 1551-1561.	7.6	70
112	â€~You should at least ask'. The expectations, hopes and fears of rare disease patients on large-scale data and biomaterial sharing for genomics research. European Journal of Human Genetics, 2016, 24, 1403-1408.	2.8	70
113	Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle and Nerve, 2003, 27, 624-627.	2.2	69
114	Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology, 2007, 68, 56-58.	1.1	69
115	Mutations in the Mitochondrial Citrate Carrier SLC25A1 are Associated with Impaired Neuromuscular Transmission. Journal of Neuromuscular Diseases, 2014, 1, 75-90.	2.6	69
116	Antibody-Mediated Targeting of an Adenovirus Vector Modified To Contain a Synthetic Immunoglobulin G-Binding Domain in the Capsid. Journal of Virology, 2003, 77, 2093-2104.	3.4	68
117	Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea. American Journal of Human Genetics, 2016, 99, 753-761.	6.2	68
118	Linker molecules between laminins and dystroglycan ameliorate laminin-α2–deficient muscular dystrophy at all disease stages. Journal of Cell Biology, 2007, 176, 979-993.	5.2	67
119	Mutations in INPP5K , Encoding a Phosphoinositide 5-Phosphatase, Cause Congenital Muscular Dystrophy with Cataracts and Mild Cognitive Impairment. American Journal of Human Genetics, 2017, 100, 523-536.	6.2	67
120	SMArtCAREÂ-ÂA platform to collect real-life outcome data of patients with spinal muscular atrophy. Orphanet Journal of Rare Diseases, 2019, 14, 18.	2.7	67
121	Screening for Carnitine Palmitoyltransferase II Deficiency by Tandem Mass Spectrometry. Journal of Inherited Metabolic Disease, 2002, 25, 17-27.	3.6	66
122	Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain, 2011, 134, 183-195.	7.6	66
123	Human Skeletal Muscle–derived CD133+ Cells Form Functional Satellite Cells After Intramuscular Transplantation in Immunodeficient Host Mice. Molecular Therapy, 2014, 22, 1008-1017.	8.2	66
124	A novel homozygous missense mutation in the GNE gene of a patient with quadriceps-sparing hereditary inclusion body myopathy associated with muscle inflammation. Neuromuscular Disorders, 2003, 13, 830-834.	0.6	65
125	A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. Journal of Neurology, 2012, 259, 474-481.	3.6	65
126	Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome, Journal of the Neurological Sciences, 2007, 263, 100-106	0.6	64

#	Article	IF	CITATIONS
127	5â€ ² Trans-Splicing Repair of the PLEC1 Gene. Journal of Investigative Dermatology, 2008, 128, 568-574.	0.7	64
128	Acute liver failure with subsequent cirrhosis as the primary manifestation of <i>TRMU</i> mutations. Journal of Inherited Metabolic Disease, 2011, 34, 197-201.	3.6	64
129	<i>ANO5</i> Gene Analysis in a Large Cohort of Patients with Anoctaminopathy: Confirmation of Male Prevalence and High Occurrence of the Common Exon 5 Gene Mutation. Human Mutation, 2013, 34, 1111-1118.	2.5	64
130	The EuroBioBank Network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. European Journal of Human Genetics, 2015, 23, 1116-1123.	2.8	63
131	The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact. European Journal of Human Genetics, 2017, 25, 1293-1302.	2.8	62
132	Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth Disease. Human Mutation, 2003, 22, 129-135.	2.5	61
133	Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathology and Applied Neurobiology, 2007, 33, 070615152525006-???.	3.2	61
134	Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations. European Journal of Paediatric Neurology, 2010, 14, 326-333.	1.6	61
135	Congenital myasthenic syndromes: spotlight on genetic defects of neuromuscular transmission. Expert Reviews in Molecular Medicine, 2007, 9, 1-20.	3.9	60
136	Novel POMGnT1 mutations define broader phenotypic spectrum of muscle–eye–brain disease. Neurogenetics, 2007, 8, 279-288.	1.4	60
137	Duchenne muscular dystrophy and caregiver burden: a systematic review. Developmental Medicine and Child Neurology, 2018, 60, 987-996.	2.1	59
138	Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle. FEBS Journal, 2001, 268, 3473-3482.	0.2	58
139	Creatine monohydrate in myotonic dystrophy. Journal of Neurology, 2002, 249, 1717-1722.	3.6	58
140	Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain, 2004, 127, 1868-1877.	7.6	58
141	Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscular Disorders, 2008, 18, 288-290.	0.6	57
142	Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells. FASEB Journal, 2006, 20, 610-620.	0.5	56
143	Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy. Neuromuscular Disorders, 2011, 21, 556-562.	0.6	56
144	Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring <i>DMD</i> Mutations. Stem Cells and Development, 2013, 22, 2714-2724.	2.1	56

#	Article	IF	CITATIONS
145	High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. Journal of Neurology, 2008, 255, 1731-1736.	3.6	55
146	Therapeutic Strategies in Congenital Myasthenic Syndromes. Neurotherapeutics, 2008, 5, 542-547.	4.4	55
147	NFâ€NF <scp>â€₽̂</scp> BBâ€dependent expression of the antiapoptotic factor câ€FLIP is regulated by calpain 3, the protein involved in limbâ€girdle muscular dystrophy type 2A. FASEB Journal, 2008, 22, 1521-1529.	0.5	55
148	European Cross-Sectional Survey ofÂCurrent Care Practices for Duchenne Muscular Dystrophy Reveals Regional andÂAge-Dependent Differences. Journal of Neuromuscular Diseases, 2016, 3, 517-527.	2.6	55
149	Clinical features of the myasthenic syndrome arising from mutations in GMPPB. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 802-809.	1.9	55
150	RD-Connect, NeurOmics and EURenOmics: collaborative European initiative for rare diseases. European Journal of Human Genetics, 2018, 26, 778-785.	2.8	55
151	P2X7 purinoceptor alterations in dystrophic <i>mdx</i> mouse muscles: relationship to pathology and potential target for treatment. Journal of Cellular and Molecular Medicine, 2012, 16, 1026-1037.	3.6	53
152	A novel mechanism causing imbalance of mitochondrial fusion and fission in human myopathies. Human Molecular Genetics, 2018, 27, 1186-1195.	2.9	52
153	Ephedrine therapy in eight patients with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscular Disorders, 2009, 19, 828-832.	0.6	51
154	Compliance to Care Guidelines for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 63-72.	2.6	51
155	Reduced serum myostatin concentrations associated with genetic muscle disease progression. Journal of Neurology, 2017, 264, 541-553.	3.6	51
156	Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Scientific Reports, 2015, 5, 17014.	3.3	50
157	Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscular Disorders, 2014, 24, 31-35.	0.6	49
158	Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Human Molecular Genetics, 2013, 22, 2905-2913.	2.9	48
159	Quality of life of patients with spinal muscular atrophy: A systematic review. European Journal of Paediatric Neurology, 2019, 23, 347-356.	1.6	48
160	Electrophysiologic features of <i>SYT2</i> mutations causing a treatable neuromuscular syndrome. Neurology, 2015, 85, 1964-1971.	1.1	47
161	Improving the informed consent process in international collaborative rare disease research: effective consent for effective research. European Journal of Human Genetics, 2016, 24, 1248-1254.	2.8	47
162	Tracking disease progression nonâ€invasively in Duchenne and Becker muscular dystrophies. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 715-726.	7.3	47

#	Article	IF	CITATIONS
163	Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome. Emerging Topics in Life Sciences, 2019, 3, 19-37.	2.6	47
164	A third of LGMD2A biopsies have normal calpain 3 proteolytic activity as determined by an in vitro assay. Neuromuscular Disorders, 2007, 17, 148-156.	0.6	46
165	Sarcoglycanopathies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 101, 41-46.	1.8	46
166	What is influencing the phenotype of the common homozygous polymerase-Î ³ mutation p.Ala467Thr?. Brain, 2012, 135, 3614-3626.	7.6	46
167	The risk of re-identification versus the need to identify individuals in rare disease research. European Journal of Human Genetics, 2016, 24, 1553-1558.	2.8	46
168	Congenital myasthenic syndrome due to a novel missense mutation in the gene encoding choline acetyltransferase. Neuromuscular Disorders, 2003, 13, 245-251.	0.6	45
169	Identification of mutations in the <i>MYO9A</i> gene in patients with congenital myasthenic syndrome. Brain, 2016, 139, 2143-2153.	7.6	45
170	A newly identified chromosomal microdeletion and an Nâ€box mutation of the AChRïµ gene cause a congenital myasthenic syndrome. Brain, 2002, 125, 1005-1013.	7.6	44
171	Antigen processing and presentation in human muscle: cathepsin S is critical for MHC class II expression and upregulated in inflammatory myopathies. Journal of Neuroimmunology, 2003, 138, 132-143.	2.3	44
172	Mutations in mtDNA-encoded cytochrome c oxidase subunit genes causing isolated myopathy or severe encephalomyopathy. Neuromuscular Disorders, 2005, 15, 851-857.	0.6	44
173	In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Human Molecular Genetics, 2009, 18, 1590-1599.	2.9	44
174	Exome sequences versus sequential gene testing in the UK highly specialised Service for Limb Girdle Muscular Dystrophy. Orphanet Journal of Rare Diseases, 2017, 12, 151.	2.7	44
175	A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatric Neurology, 2020, 112, 84-93.	2.1	44
176	Variable reduction of caveolin-3 in patients with LGMD2B/MM. Journal of Neurology, 2003, 250, 1431-1438.	3.6	43
177	Treatment of glycogenosis type V with ketogenic diet. Annals of Neurology, 2005, 58, 341-341.	5.3	43
178	Molecular characterisation of congenital myasthenic syndromes in Southern Brazil. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 973-977.	1.9	43
179	Inclusion Body Myositis. American Journal of Pathology, 2011, 179, 1347-1359.	3.8	43
180	The Increasing Genetic and Phenotypical Diversity of Congenital Myasthenic Syndromes. Neuropediatrics, 2017, 48, 294-308.	0.6	43

#	Article	IF	CITATIONS
181	Clinical presentation and proteomic signature of patients with <i>TANGO2</i> mutations. Journal of Inherited Metabolic Disease, 2020, 43, 297-308.	3.6	43
182	Combinatorial Blockade of Calcineurin and CD28 Signaling Facilitates Primary and Secondary Therapeutic Gene Transfer by Adenovirus Vectors in Dystrophic (<i>mdx</i>) Mouse Muscles. Journal of Virology, 1998, 72, 4601-4609.	3.4	42
183	Noninvasive ¹³ C-Octanoic Acid Breath Test Shows Delayed Gastric Emptying in Patients with Amyotrophic Lateral Sclerosis. Digestion, 1999, 60, 567-571.	2.3	41
184	Interventions for muscular dystrophy: molecular medicines entering the clinic. Lancet, The, 2009, 374, 1849-1856.	13.7	41
185	Long-Term Preservation of Cardiac Structure and Function After Adeno-Associated Virus Serotype 9-Mediated Microdystrophin Gene Transfer in <i>mdx</i> Mice. Human Gene Therapy, 2012, 23, 566-575.	2.7	41
186	A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Movement Disorders, 2012, 27, 789-793.	3.9	41
187	Adult care for Duchenne muscular dystrophy in the UK. Journal of Neurology, 2015, 262, 629-641.	3.6	41
188	Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD. Molecular Therapy - Nucleic Acids, 2018, 13, 1-15.	5.1	41
189	ANO10 c.1150_1151del is a founder mutation causing autosomal recessive cerebellar ataxia in Roma/Gypsies. Journal of Neurology, 2012, 259, 906-911.	3.6	40
190	A phase 3 randomized study evaluating sialic acid extended-release for GNE myopathy. Neurology, 2019, 92, e2109-e2117.	1.1	40
191	Expression of dystrophin driven by the 1.35-kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Molecular Therapy, 2003, 8, 80-89.	8.2	39
192	Long-term improvement of slow-channel congenital myasthenic syndrome with fluoxetine. Neuromuscular Disorders, 2006, 16, 329-333.	0.6	39
193	Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2. Journal of Neurology, 2010, 257, 1517-1523.	3.6	39
194	Complex phenotypes associated with STIM1 mutations in both coiled coil and EF-hand domains. Neuromuscular Disorders, 2017, 27, 861-872.	0.6	39
195	Translocation of molecular chaperones to the titin springs is common in skeletal myopathy patients and affects sarcomere function. Acta Neuropathologica Communications, 2017, 5, 72.	5.2	39
196	Analysis of HLA class I and II alleles in sporadic inclusion-body myositis. Journal of Neurology, 2003, 250, 1313-1317.	3.6	38
197	Clinical variability of CMS-EA (congenital myasthenic syndrome with episodic apnea) due to identical CHAT mutations in two infants. European Journal of Paediatric Neurology, 2005, 9, 7-12.	1.6	38
198	Deletion of the LMNA initiator codon leading to a neurogenic variant of autosomal dominant Emery–Dreifuss muscular dystrophy. Neuromuscular Disorders, 2005, 15, 40-44.	0.6	38

#	Article	IF	CITATIONS
199	Clinical, genetic, and cardiac magnetic resonance imaging findings in primary desminopathies. Neuromuscular Disorders, 2008, 18, 475-482.	0.6	38
200	215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13–15 November 2015, Heemskerk, The Netherlands. Neuromuscular Disorders, 2016, 26, 535-547.	0.6	38
201	Cyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain, 2009, 132, 147-155.	7.6	37
202	Intragenic deletion of <i>TRIM32</i> in compound heterozygotes with sarcotubular myopathy/LGMD2H. Human Mutation, 2009, 30, E831-E844.	2.5	37
203	Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation. Journal of the Neurological Sciences, 2013, 331, 155-157.	0.6	37
204	Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene. Molecular Therapy - Nucleic Acids, 2014, 3, e155.	5.1	37
205	Characterization of Human SCO1 and COX17 Genes in Mitochondrial Cytochrome-c-Oxidase Deficiency. Biochemical and Biophysical Research Communications, 2000, 276, 530-533.	2.1	36
206	Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients. Journal of Neurology, 2018, 265, 194-203.	3.6	36
207	GNE myopathy: from clinics and genetics to pathology and research strategies. Orphanet Journal of Rare Diseases, 2018, 13, 70.	2.7	36
208	Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurology, The, 2020, 19, 522-532.	10.2	36
209	Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disorders, 2006, 16, 541-547.	0.6	35
210	Heteroplasmic mutation in the anticodon-stem of mitochondrial tRNAVal causing MNGIE-like gastrointestinal dysmotility and cachexia. Journal of Neurology, 2009, 256, 810-815.	3.6	35
211	Phenotypic stratification and genotype–phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscular Disorders, 2018, 28, 158-168.	0.6	35
212	Impairment of Force Generation after Adenovirus-Mediated Gene Transfer to Muscle Is Alleviated by Adenoviral Gene Inactivation and Host CD8 ⁺ T Cell Deficiency. Human Gene Therapy, 1996, 7, 1813-1826.	2.7	34
213	CHRND mutation causes a congenital myasthenic syndrome by impairing co-clustering of the acetylcholine receptor with rapsyn. Brain, 2006, 129, 2784-2793.	7.6	34
214	MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. Journal of Cell Biology, 2019, 218, 1686-1705.	5.2	34
215	A G468-T AMPD1 mutant allele contributes to the high incidence of myoadenylate deaminase deficiency in the Caucasian population. Neuromuscular Disorders, 2002, 12, 558-565.	0.6	33
216	De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscular Disorders, 2002, 12, 947-951.	0.6	33

Hanns LochmÃ¹/4ller

#	Article	IF	CITATIONS
217	Neurology in sub-Saharan Africa. Neurology, 2007, 69, 1715-1718.	1.1	33
218	Mitochondrial DNA deletions in muscle satellite cells: implications for therapies. Human Molecular Genetics, 2013, 22, 4739-4747.	2.9	33
219	The RD-Connect Registry & Biobank Finder: a tool for sharing aggregated data and metadata among rare disease researchers. European Journal of Human Genetics, 2018, 26, 631-643.	2.8	33
220	Chronic pain has a strong impact on quality of life in facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2018, 57, 380-387.	2.2	33
221	Intersection of Proteomics and Genomics to "Solve the Unsolved―in Rare Disorders such as Neurodegenerative and Neuromuscular Diseases. Proteomics - Clinical Applications, 2018, 12, 1700073.	1.6	33
222	Elevated striatal dopamine transporter in a drug naive patient with Tourette syndrome and attention deficit/ hyperactivity disorder: positive effect of methylphenidate. Journal of Neurology, 2002, 249, 1116-1118.	3.6	32
223	Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscular Disorders, 2013, 23, 377-387.	0.6	32
224	A 3'-UTR mutation creates a microRNA target site in the GFPT1 gene of patients with congenital myasthenic syndrome. Human Molecular Genetics, 2015, 24, 3418-3426.	2.9	32
225	GNE myopathy in Roma patients homozygous for the p.I618T founder mutation. Neuromuscular Disorders, 2015, 25, 713-718.	0.6	32
226	Toxicity of Replication-Defective Adenoviral Recombinants in Dissociated Cultures of Nervous Tissue. Experimental Neurology, 1996, 140, 14-20.	4.1	31
227	Adenovirus-mediated Wild-type p53 Gene Transfer and Overexpression Induces Apoptosis of Human Glioma Cells Independent of Endogenous p53 Status. Journal of Neuropathology and Experimental Neurology, 1997, 56, 872-878.	1.7	31
228	Adenovirus Vectors Based on Human Adenovirus Type 19a Have High Potential for Human Muscle-Directed Gene Therapy. Human Gene Therapy, 2006, 17, 193-205.	2.7	31
229	Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscular Disorders, 2010, 20, 720-724.	0.6	31
230	In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Molecular Genetics and Metabolism, 2012, 107, 95-103.	1.1	31
231	Genotype/phenotype correlations in AARS-related neuropathy in a cohort of patients from the United Kingdom and Ireland. Journal of Neurology, 2015, 262, 1899-1908.	3.6	31
232	Sleepiness and Sleep-related Breathing Disorders in Myotonic Dystrophy and Responses to Treatment: A Prospective Cohort Study. Journal of Neuromuscular Diseases, 2016, 3, 529-537.	2.6	31
233	Congenital Myasthenic Syndromes or Inherited Disorders of Neuromuscular Transmission: Recent Discoveries and Open Questions. Journal of Neuromuscular Diseases, 2017, 4, 269-284.	2.6	31
234	Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease. Genetics in Medicine, 2018, 20, 1224-1235.	2.4	31

#	Article	IF	CITATIONS
235	Eosinophilic myositis as presenting symptom in Î ³ -sarcoglycanopathy. Neuromuscular Disorders, 2009, 19, 167-171.	0.6	30
236	Two recurrent mutations are associated with GNE myopathy in the North of Britain. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1359-1365.	1.9	30
237	204th ENMC International Workshop on Biomarkers in Duchenne Muscular Dystrophy 24–26 January 2014, Naarden, The Netherlands. Neuromuscular Disorders, 2015, 25, 184-198.	0.6	30
238	â€~IRDiRC Recognized Resources': a new mechanism to support scientists to conduct efficient, high-quality research for rare diseases. European Journal of Human Genetics, 2017, 25, 162-165.	2.8	30
239	Respiratory involvement in ambulant and non-ambulant patients with facioscapulohumeral muscular dystrophy. Journal of Neurology, 2017, 264, 1271-1280.	3.6	30
240	The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscular Disorders, 2019, 29, 21-29.	0.6	30
241	Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle. American Journal of Pathology, 2011, 178, 273-283.	3.8	29
242	Genetic heterogeneity and pathophysiological mechanisms in congenital myasthenic syndromes. European Journal of Paediatric Neurology, 2011, 15, 189-196.	1.6	29
243	Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy. Scientific Reports, 2016, 6, 19750.	3.3	29
244	SPARC Interacts with Actin in Skeletal Muscle inÂVitro and inÂVivo. American Journal of Pathology, 2017, 187, 457-474.	3.8	29
245	Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome. Human Molecular Genetics, 2019, 28, 2339-2351.	2.9	29
246	Cloning of Novel Injury-regulated Genes. Journal of Biological Chemistry, 1999, 274, 13305-13310.	3.4	28
247	The spread of transgene expression at the site of gene construct injection. Muscle and Nerve, 2001, 24, 488-495.	2.2	28
248	Role of international registries in enhancing the care of familial hypercholesterolaemia. International Journal of Evidence-Based Healthcare, 2013, 11, 134-139.	0.5	28
249	Congenital Myasthenic Syndromes with Predominant Limb Girdle Weakness. Journal of Neuromuscular Diseases, 2015, 2, S21-S29.	2.6	28
250	Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion. Brain, 2017, 140, 37-48.	7.6	28
251	Measuring Habitual Physical Activity inÂNeuromuscular Disorders: A Systematic Review. Journal of Neuromuscular Diseases, 2017, 4, 25-52.	2.6	28
252	Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer. BioMed Research International, 2017, 2017, 1-13.	1.9	28

#	Article	IF	CITATIONS
253	The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes. Human Molecular Genetics, 2018, 27, 1556-1564.	2.9	28
254	Synaptic Congenital Myasthenic Syndrome in Three Patients due to a Novel Missense Mutation (T441A) of theCOLQGene. Neuropediatrics, 2004, 35, 183-189.	0.6	27
255	A novel mutation in the myotilin gene (MYOT) causes a severe form of limb girdle muscular dystrophy 1A (LGMD1A). Journal of Neurology, 2011, 258, 1437-1444.	3.6	27
256	Phenotypic variability of TRPV4 related neuropathies. Neuromuscular Disorders, 2015, 25, 516-521.	0.6	27
257	Comparative mass spectrometric and immunoassayâ€based proteome analysis in serum of Duchenne muscular dystrophy patients. Proteomics - Clinical Applications, 2016, 10, 290-299.	1.6	27
258	Longitudinal serum biomarker screening identifies malate dehydrogenase 2 as candidate prognostic biomarker for Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 505-517.	7.3	27
259	Methionine homozygosity at prion gene codon 129 may predispose to sporadic inclusion-body myositis. Lancet, The, 1999, 353, 465-466.	13.7	26
260	Facioscapulohumeral muscular dystrophy presenting with unusual phenotypes and atypical morphological features of vacuolar myopathy. Journal of Neurology, 2010, 257, 1108-1118.	3.6	26
261	Human Neurotrophin Receptor p75NTR Defines Differentiation-Oriented Skeletal Muscle Precursor Cells: Implications for Muscle Regeneration. Journal of Neuropathology and Experimental Neurology, 2011, 70, 133-142.	1.7	26
262	Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Human Molecular Genetics, 2011, 20, 4879-4890.	2.9	26
263	The TREAT-NMD care and trial site registry: an online registry to facilitate clinical research for neuromuscular diseases. Orphanet Journal of Rare Diseases, 2013, 8, 171.	2.7	26
264	Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Human Molecular Genetics, 2018, 27, 2187-2204.	2.9	26
265	Mass spectrometryâ€based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics - Clinical Applications, 2018, 12, 1700071.	1.6	26
266	A checklist for clinical trials in rare disease: obstacles and anticipatory actions—lessons learned from the FOR-DMD trial. Trials, 2018, 19, 291.	1.6	26
267	Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO Journal, 2020, 39, e105364.	7.8	26
268	A new web-based method for automated analysis of muscle histology. BMC Musculoskeletal Disorders, 2013, 14, 26.	1.9	25
269	Design, set-up and utility of the UK facioscapulohumeral muscular dystrophy patient registry. Journal of Neurology, 2016, 263, 1401-1408.	3.6	25
270	Predictors of Health-Related Quality of Life in boys with Duchenne muscular dystrophy from six European countries. Journal of Neurology, 2017, 264, 709-723.	3.6	25

#	Article	IF	CITATIONS
271	Recessive variants of <i>MuSK</i> are associated with late onset CMS and predominant limb girdle weakness. American Journal of Medical Genetics, Part A, 2018, 176, 1594-1601.	1.2	25
272	Risk of skin cancer among patients with myotonic dystrophy type 1 based on primary care physician data from the <scp>U</scp> . <scp>K</scp> . <scp>C</scp> linical <scp>P</scp> ractice <scp>R</scp> esearch <scp>D</scp> atalink. International Journal of Cancer, 2018, 142, 1174-1181.	5.1	25
273	Neuromyotonia, myocloni, sensory neuropathy and cerebellar symptoms in a patient with antibodies to neuronal nucleoproteins (anti-Hu-antibodies). Clinical Neurology and Neurosurgery, 1999, 101, 207-209.	1.4	24
274	The Role of Biobanking in Rare Diseases: European Consensus Expert Group Report. Biopreservation and Biobanking, 2009, 7, 155-156.	1.0	24
275	Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes. Human Molecular Genetics, 2010, 19, 1726-1740.	2.9	24
276	Economic Evaluation in Duchenne Muscular Dystrophy: Model Frameworks for Cost-Effectiveness Analysis. Pharmacoeconomics, 2017, 35, 249-258.	3.3	24
277	Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C. International Journal of Molecular Sciences, 2018, 19, 4072.	4.1	24
278	Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy. Human Molecular Genetics, 2009, 18, 4089-4101.	2.9	23
279	DOK7 limb-girdle myasthenic syndrome mimicking congenital muscular dystrophy. Neuromuscular Disorders, 2013, 23, 36-42.	0.6	23
280	The UK Myotonic Dystrophy Patient Registry: facilitating and accelerating clinical research. Journal of Neurology, 2017, 264, 979-988.	3.6	23
281	Interferons impair early transgene expression by adenovirus-mediated gene transfer in muscle cells. Journal of Molecular Medicine, 1998, 76, 442-450.	3.9	22
282	Novel splice site mutation in the caveolin-3 gene leading to autosomal recessive limb girdle muscular dystrophy. Neuromuscular Disorders, 2006, 16, 432-436.	0.6	22
283	DOK7 mutations presenting as a proximal myopathy in French Canadians. Neuromuscular Disorders, 2010, 20, 453-457.	0.6	22
284	Two new protocols to enhance the production and isolation of human induced pluripotent stem cell lines. Stem Cell Research, 2011, 6, 158-167.	0.7	22
285	De-duplicating patient records from three independent data sources reveals the incidence of rare neuromuscular disorders in Germany. Orphanet Journal of Rare Diseases, 2019, 14, 152.	2.7	22
286	<i>GNE</i> genotype explains 20% of phenotypic variability in GNE myopathy. Neurology: Genetics, 2019, 5, e308.	1.9	22
287	Increasing phenotypic annotation improves the diagnostic rate of exome sequencing in a rare neuromuscular disorder. Human Mutation, 2019, 40, 1797-1812.	2.5	22
288	Economic Costs of Myasthenia Gravis: A Systematic Review. Pharmacoeconomics, 2020, 38, 715-728.	3.3	22

#	Article	IF	CITATIONS
289	Disease burden of myotonic dystrophy type 1. Journal of Neurology, 2019, 266, 998-1006.	3.6	21
290	A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome. Orphanet Journal of Rare Diseases, 2020, 15, 206.	2.7	21
291	Ocular features of the congenital cataracts facial dysmorphism neuropathy syndrome. Ophthalmology, 2004, 111, 1415-1423.	5.2	20
292	Promoter Dependence of Plasmid–Pluronics Targeted α Galactosidase A Expression in Skeletal Muscle of Fabry Mice. Molecular Therapy, 2005, 12, 985-990.	8.2	20
293	Intercellular exchanges of membrane fragments (trogocytosis) between human muscle cells and immune cells: A potential mechanism for the modulation of muscular immune responses. Journal of Neuroimmunology, 2009, 209, 131-138.	2.3	20
294	Behr's Syndrome is Typically Associated with Disturbed Mitochondrial Translation and Mutations in the C12orf65 Gene. Journal of Neuromuscular Diseases, 2014, 1, 55-63.	2.6	20
295	Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. Advances in Experimental Medicine and Biology, 2017, 1031, 55-94.	1.6	20
296	Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation. Annals of Clinical and Translational Neurology, 2019, 6, 642-654.	3.7	20
297	Assessment of disease progression in dysferlinopathy. Neurology, 2019, 92, .	1.1	20
298	Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. European Journal of Human Genetics, 2020, 28, 373-377.	2.8	20
299	Biallelic loss of function variants in <scp><i>SYT2</i></scp> cause a treatable congenital onset presynaptic myasthenic syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2272-2283.	1.2	20
300	Blood-derived biomarkers correlate with clinical progression in Duchenne muscular dystrophy. Journal of Neuromuscular Diseases, 2020, 7, 231-246.	2.6	20
301	Clobal FKRP Registry: observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9. Annals of Clinical and Translational Neurology, 2020, 7, 757-766.	3.7	20
302	Exercise-induced myalgia in hypothyroidism. The Clinical Investigator, 1993, 71, 999-1001.	0.6	19
303	A newly identified chromosomal microdeletion of the rapsyn gene causes a congenital myasthenic syndrome. Neuromuscular Disorders, 2004, 14, 744-749.	0.6	19
304	Facing the genetic heterogeneity in neuromuscular disorders: Linkage analysis as an economic diagnostic approach towards the molecular diagnosis. Neuromuscular Disorders, 2006, 16, 4-13.	0.6	19
305	Human muscle cells express the costimulatory molecule B7â€H3, which modulates muscle–immune interactions. Arthritis and Rheumatism, 2008, 58, 3600-3608.	6.7	19
306	Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α–ε subunit interface. Neuromuscular Disorders, 2014, 24, 143-147.	0.6	19

#	Article	IF	CITATIONS
307	Teenage exercise is associated with earlier symptom onset in dysferlinopathy: a retrospective cohort study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1224-1226.	1.9	19
308	Eight years after an international workshop on myotonic dystrophy patient registries: case study of a global collaboration for a rare disease. Orphanet Journal of Rare Diseases, 2018, 13, 155.	2.7	19
309	Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skeletal Muscle, 2018, 8, 28.	4.2	19
310	Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 21. European Journal of Heart Failure, 2013, 15, 986-994.	7.1	18
311	Phenotypic convergence of Menkes and Wilson disease. Neurology: Genetics, 2016, 2, e119.	1.9	18
312	A novel recessive TTN founder variant is a common cause of distal myopathy in the Serbian population. European Journal of Human Genetics, 2017, 25, 572-581.	2.8	18
313	A â€~second truncation' in TTN causes early onset recessive muscular dystrophy. Neuromuscular Disorders, 2017, 27, 1009-1017.	0.6	18
314	A common CHRNE mutation in Brazilian patients with congenital myasthenic syndrome. Journal of Neurology, 2018, 265, 708-713.	3.6	18
315	GFPT1 deficiency in muscle leads to myasthenia and myopathy in mice. Human Molecular Genetics, 2018, 27, 3218-3232.	2.9	18
316	Improved Criteria for the Classification of Titin Variants in Inherited Skeletal Myopathies. Journal of Neuromuscular Diseases, 2020, 7, 153-166.	2.6	18
317	The RD onnect Genomeâ€Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Human Mutation, 2022, , .	2.5	18
318	Myopathy with trabecular muscle fibers. Neuromuscular Disorders, 1999, 9, 208-214.	0.6	17
319	The Short MCK1350 Promoter/Enhancer Allows for Sufficient Dystrophin Expression in Skeletal Muscles of mdx Mice. Biochemical and Biophysical Research Communications, 2002, 292, 626-631.	2.1	17
320	Development and psychometric analysis of the Duchenne muscular dystrophy Functional Ability Self-Assessment Tool (DMDSAT). Neuromuscular Disorders, 2015, 25, 937-944.	0.6	17
321	Clinical and research strategies for limbâ€girdle congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 2018, 1412, 102-112.	3.8	17
322	A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era. Orphanet Journal of Rare Diseases, 2018, 13, 211.	2.7	17
323	Lower Limb Radiology of Distal Myopathy due to the S60F Myotilin Mutation. European Neurology, 2009, 62, 161-166.	1.4	16
324	Severe nemaline myopathy associated with consecutive mutations E74D and H75Y on a single ACTA1 allele. Neuromuscular Disorders, 2009, 19, 481-484.	0.6	16

#	Article	IF	CITATIONS
325	Deep RNA profiling identified clock and molecular clock genes as pathophysiological signatures in collagen VI myopathy. Journal of Cell Science, 2016, 129, 1671-84.	2.0	16
326	Natural History, Trial Readiness and Gene Discovery: Advances in Patient Registries for Neuromuscular Disease. Advances in Experimental Medicine and Biology, 2017, 1031, 97-124.	1.6	16
327	Costs of Illness of Spinal Muscular Atrophy: A Systematic Review. Applied Health Economics and Health Policy, 2021, 19, 501-520.	2.1	16
328	Biobanking in Rare Disorders. Advances in Experimental Medicine and Biology, 2010, 686, 105-113.	1.6	16
329	Multispectral optoacoustic tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients. Photoacoustics, 2022, 25, 100315.	7.8	16
330	Myotonic ADR-MDX mutant mice show less severe muscular dystrophy than MDX mice1Part of this work was presented at the meeting of the German Physiological Society in Rostock, March 1997.1. Neuromuscular Disorders, 1998, 8, 542-550.	0.6	15
331	Myofibrillar myopathy caused by a mutation in the motor domain of mouse MyHC IIb. Human Molecular Genetics, 2012, 21, 1706-1724.	2.9	15
332	NDUFS8-related Complex I Deficiency Extends Phenotype from "PEO Plus―to Leigh Syndrome. JIMD Reports, 2012, 10, 17-22.	1.5	15
333	MRC Centre Neuromuscular Biobank (Newcastle and London): Supporting and facilitating rare and neuromuscular disease research worldwide. Neuromuscular Disorders, 2017, 27, 1054-1064.	0.6	15
334	Mobility shift of beta-dystroglycan as a marker of <i>GMPPB</i> gene-related muscular dystrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 762-768.	1.9	15
335	Benign and malignant tumors in the UK myotonic dystrophy patient registry. Muscle and Nerve, 2018, 57, 316-320.	2.2	15
336	Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain, 2020, 143, 2406-2420.	7.6	15
337	Molecular pathophysiology of human MICU1 deficiency. Neuropathology and Applied Neurobiology, 2021, 47, 840-855.	3.2	15
338	When running a stop sign may be a good thing. Annals of Neurology, 2001, 49, 693-694.	5.3	14
339	Efficient and Fast Functional Screening of Microdystrophin ConstructsIn VivoandIn Vitrofor Therapy of Duchenne Muscular Dystrophy. Human Gene Therapy, 2009, 20, 641-650.	2.7	14
340	Intolerance to βâ€blockade in a mouse model of δâ€sarcoglycanâ€deficient muscular dystrophy cardiomyopathy. European Journal of Heart Failure, 2010, 12, 1163-1170.	7.1	14
341	Myopathy caused by anoctamin 5 mutations and necrotizing vasculitis. Journal of Neurology, 2012, 259, 1988-1990.	3.6	14
342	MYO9A deficiency in motor neurons is associated with reduced neuromuscular agrin secretion. Human Molecular Genetics, 2018, 27, 1434-1446.	2.9	14

#	Article	IF	CITATIONS
343	Congenital myasthenic syndrome caused by novel COL13A1 mutations. Journal of Neurology, 2019, 266, 1107-1112.	3.6	14
344	Long Term Follow-Up on Pediatric Cases With Congenital Myasthenic Syndromes—A Retrospective Single Centre Cohort Study. Frontiers in Human Neuroscience, 2020, 14, 560860.	2.0	14
345	Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. Journal of Molecular Diagnostics, 2020, 22, 1205-1215.	2.8	14
346	Multiple acyl-coenzyme A dehydrogenase deficiency shows a possible founder effect and is the most frequent cause of lipid storage myopathy in Iran. Journal of the Neurological Sciences, 2020, 411, 116707.	0.6	14
347	High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain, 2022, 145, 1507-1518.	7.6	14
348	Congenital myasthenic syndrome: Correlation between clinical features and molecular diagnosis. European Journal of Neurology, 2022, 29, 833-842.	3.3	14
349	The scope of gene therapy in humans: scientific, safety and ethical considerations. Neuromuscular Disorders, 1997, 7, 273-276.	0.6	13
350	Human myoblasts modulate the function of antigen-presenting cells. Journal of Neuroimmunology, 2008, 200, 62-70.	2.3	13
351	Divergent Molecular Effects of Desmin Mutations on Protein Assembly in Myofibrillar Myopathy. Journal of Neuropathology and Experimental Neurology, 2010, 69, 415-424.	1.7	13
352	Mutations alter secretion of fukutin-related protein. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 253-258.	3.8	13
353	Congenital Myasthenic Syndrome Due to Choline Acetyltransferase Mutations in Infants. Journal of Child Neurology, 2014, 29, 389-393.	1.4	13
354	Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1). Biomolecules, 2015, 5, 2758-2781.	4.0	13
355	MEGF10 related myopathies: A new case with adult onset disease with prominent respiratory failure and review of reported phenotypes. Neuromuscular Disorders, 2018, 28, 48-53.	0.6	13
356	Clinical variability of early-onset congenital myasthenic syndrome due to biallelic RAPSN mutations in Brazil. Neuromuscular Disorders, 2018, 28, 961-964.	0.6	13
357	Analyzing walking speeds with ankle and wrist worn accelerometers in a cohort with myotonic dystrophy. Disability and Rehabilitation, 2019, 41, 2972-2978.	1.8	13
358	An improved method for culturing myotubes on laminins for the robust clustering of postsynaptic machinery. Scientific Reports, 2020, 10, 4524.	3.3	13
359	Cathepsin D as biomarker in cerebrospinal fluid of nusinersenâ€treated patients with spinal muscular atrophy. European Journal of Neurology, 2022, 29, 2084-2096.	3.3	13
360	Characterization of the DMD/BMD patient population in Czech Republic and Slovakia using an innovative registry approach. Neuromuscular Disorders, 2009, 19, 250-254.	0.6	12

#	Article	IF	CITATIONS
361	Phenotypic heterogeneity in British patients with a founder mutation in the FHL1 gene. European Journal of Human Genetics, 2011, 19, 1038-1044.	2.8	12
362	Translating the Genomics Revolution: The Need for an International Gene Therapy Consortium for Monogenic Diseases. Molecular Therapy, 2013, 21, 266-268.	8.2	12
363	Congenital myasthenic syndrome and minicoreâ€like myopathy with <i><scp>DOK7</scp></i> mutation. Muscle and Nerve, 2013, 48, 151-152.	2.2	12
364	Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA). Journal of Neurology, 2017, 264, 701-708.	3.6	12
365	Drosophila studies support a role for a presynaptic synaptotagmin mutation in a human congenital myasthenic syndrome. PLoS ONE, 2017, 12, e0184817.	2.5	12
366	Limb girdle muscular dystrophy 2G in a religious minority of Bulgarian Muslims homozygous for the c.75G>A, p.Trp25X mutation. Neuromuscular Disorders, 2018, 28, 625-632.	0.6	12
367	Dihydropyridine Receptor Congenital Myopathy In A Consangineous Turkish Family. Journal of Neuromuscular Diseases, 2019, 6, 377-384.	2.6	12
368	Phenotype may predict the clinical course of facioscapolohumeral muscular dystrophy. Muscle and Nerve, 2019, 59, 711-713.	2.2	12
369	NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain, 2022, 145, 3999-4015.	7.6	12
370	Novel missense mutation p.A310P in the GNE gene in autosomal-recessive hereditary inclusion-body myopathy/distal myopathy with rimmed vacuoles in an Italian family. Neuromuscular Disorders, 2010, 20, 335-336.	0.6	11
371	Analysis of the functional capacity outcome measures for myotonic dystrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1487-1497.	3.7	11
372	<i>CHRNG</i> â€related nonlethal multiple pterygium syndrome: Muscle imaging pattern and clinical, histopathological, and molecular genetic findings. American Journal of Medical Genetics, Part A, 2019, 179, 915-926.	1.2	11
373	Health-Related Quality of Life in Patients with Adult-Onset Myotonic Dystrophy Type 1: A Systematic Review. Patient, 2019, 12, 365-373.	2.7	11
374	Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss. American Journal of Human Genetics, 2021, 108, 2006-2016.	6.2	11
375	Attenuation of adverse cardiac effects in prednisolone-treated δ-sarcoglycan-deficient mice by mineralocorticoid-receptor-antagonism. Neuromuscular Disorders, 2010, 20, 21-28.	0.6	10
376	Psychometric analysis of the pediatric quality of life inventory 3.0 neuromuscular module administered to patients with duchenne muscular dystrophy: A rasch analysis. Muscle and Nerve, 2018, 58, 367-373.	2.2	10
377	Position Statement: Sharing of Clinical Research Data in Spinal Muscular Atrophy to Accelerate Research and Improve Outcomes for Patients. Journal of Neuromuscular Diseases, 2018, 5, 131-133.	2.6	10
378	Modulation of Agrin and RhoA Pathways Ameliorates Movement Defects and Synapse Morphology in MYO9A-Depleted Zebrafish. Cells, 2019, 8, 848.	4.1	10

#	Article	IF	CITATIONS
379	"Be an ambassador for change that you would like to see― a call to action to all stakeholders for co-creation in healthcare and medical research to improve quality of life of people with a neuromuscular disease. Orphanet Journal of Rare Diseases, 2019, 14, 126.	2.7	10
380	A Review of International Biobanks and Networks: Success Factors and Key Benchmarks—A 10-Year Retrospective Review. Biopreservation and Biobanking, 2019, 17, 512-519.	1.0	10
381	Psychometric properties of the Zarit Caregiver Burden Interview administered to caregivers to patients with Duchenne muscular dystrophy: a Rasch analysis. Disability and Rehabilitation, 2019, 41, 966-973.	1.8	10
382	Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1. Neurology: Genetics, 2021, 7, e572.	1.9	10
383	Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). European Journal of Human Genetics, 2021, 29, 1348-1353.	2.8	10
384	Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscular Disorders, 2002, 12, S30-S39.	0.6	9
385	<i>COL4A1</i> -related autosomal recessive encephalopathy in 2 Turkish children. Neurology: Genetics, 2020, 6, e392.	1.9	9
386	Tumor Necrosis Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in Duchenne Muscular Dystrophy. Frontiers in Genetics, 2020, 11, 605.	2.3	9
387	Results from a 3-year Non-interventional, Observational Disease Monitoring Program in Adults with GNE Myopathy. Journal of Neuromuscular Diseases, 2021, 8, 225-234.	2.6	9
388	Antisense oligonucleotides and short interfering RNAs silencing the cyclin-dependent kinase inhibitor p21 improve proliferation of Duchenne muscular dystrophy patients' primary skeletal myoblasts. Journal of Molecular Medicine, 2005, 83, 64-71.	3.9	8
389	Reverse protein arrays as novel approach for protein quantification in muscular dystrophies. Neuromuscular Disorders, 2010, 20, 302-309.	0.6	8
390	Psycho-organic symptoms as early manifestation of adult onset POMT1-related limb girdle muscular dystrophy. Neuromuscular Disorders, 2014, 24, 990-992.	0.6	8
391	Cytokine Profiling of Serum Allows Monitoring of Disease Progression in Inclusion Body Myositis. Journal of Neuromuscular Diseases, 2017, 4, 327-335.	2.6	8
392	GNE myopathy in the bedouin population of Kuwait: Genetics, prevalence, and clinical description. Muscle and Nerve, 2018, 58, 700-707.	2.2	8
393	A novel, pathogenic dinucleotide deletion in the mitochondrial MT-TY gene causing myasthenia-like features. Neuromuscular Disorders, 2020, 30, 661-668.	0.6	8
394	Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion. Journal of Neurology, 2020, 267, 3643-3649.	3.6	8
395	Confirmation of TACO1 as a Leigh Syndrome Disease Gene in Two Additional Families. Journal of Neuromuscular Diseases, 2020, 7, 301-308.	2.6	8
396	Simultaneous Dystrophin and Dysferlin Deficiencies Associated with High-Level Expression of the Coxsackie and Adenovirus Receptor in Transgenic Mice. American Journal of Pathology, 2006, 169, 2148-2160.	3.8	7

#	Article	IF	CITATIONS
397	A comparative study of care practices for young boys with Duchenne muscular dystrophy between Japan and European countries: Implications of early diagnosis. Neuromuscular Disorders, 2017, 27, 894-904.	0.6	7
398	The Position of Neuromuscular Patients in Shared Decision Making. Report from the 235th ENMC Workshop: Milan, Italy, January 19-20, 2018. Journal of Neuromuscular Diseases, 2019, 6, 161-172.	2.6	7
399	SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiology of Disease, 2019, 124, 218-229.	4.4	7
400	Activities of daily living in myotonic dystrophy type 1. Acta Neurologica Scandinavica, 2020, 141, 380-387.	2.1	7
401	Expanding the clinical and molecular spectrum of <scp> <i>ATP6V1A</i></scp> related metabolic cutis laxa. Journal of Inherited Metabolic Disease, 2021, 44, 972-986.	3.6	7
402	Recessive VAMP1 mutations associated with severe congenital myasthenic syndromes – A recognizable clinical phenotype. European Journal of Paediatric Neurology, 2021, 31, 54-60.	1.6	7
403	INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain, 2021, 144, 2427-2442.	7.6	7
404	A Canadian Adult Spinal Muscular Atrophy Outcome Measures Toolkit: Results of a National Consensus using a Modified Delphi Method. Journal of Neuromuscular Diseases, 2021, 8, 579-588.	2.6	7
405	A founder mutation in theÂGMPPBÂgene [c.1000G > A (p.Asp334Asn)] causes a mild form of limb-gir muscular dystrophy/congenital myasthenic syndrome (LGMD/CMS) in South Indian patients. Neurogenetics, 2021, 22, 271-285.	dle 1.4	7
406	Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies. Molecular and Cellular Biochemistry, 2008, 316, 135-140.	3.1	6
407	Presymptomatic late-onset Pompe disease identified by the dried blood spot test. Neuromuscular Disorders, 2013, 23, 89-92.	0.6	6
408	Long-term follow-up in patients with CCFDN syndrome. Neurology, 2014, 83, 1337-1344.	1.1	6
409	Overview of existing initiatives to develop and improve access and data sharing in rare disease registries and biobanks worldwide. Expert Opinion on Orphan Drugs, 2016, 4, 729-739.	0.8	6
410	Whole-exome sequencing identifies mutations in <i>MYMK</i> in a mild form of Carey-Fineman-Ziter syndrome. Neurology: Genetics, 2018, 4, e226.	1.9	6
411	Severe neurodevelopmental disease caused by a homozygous TLK2 variant. European Journal of Human Genetics, 2020, 28, 383-387.	2.8	6
412	A National Spinal Muscular Atrophy Registry for Real-World Evidence. Canadian Journal of Neurological Sciences, 2020, 47, 810-815.	0.5	6
413	Disease monitoring programs of rare genetic diseases: transparent data sharing between academic and commercial stakeholders. Orphanet Journal of Rare Diseases, 2021, 16, 141.	2.7	6
414	miR-223-3p and miR-24-3p as novel serum-based biomarkers for myotonic dystrophy type 1. Molecular Therapy - Methods and Clinical Development, 2021, 23, 169-183.	4.1	6

#	Article	IF	CITATIONS
415	Autosomal recessive variants in TUBGCP2 alter the γ-tubulin ring complex leading to neurodevelopmental disease. IScience, 2021, 24, 101948.	4.1	6
416	Childhood dermatomyositis associated with intracranial tumor and liver cysts. European Journal of Paediatric Neurology, 2007, 11, 76-80.	1.6	5
417	New Treatments for Neuromuscular Disease: Optimism and Obstacles. Neurotherapeutics, 2008, 5, 497-498.	4.4	5
418	The impact of integrated omics technologies for patients with rare diseases. Expert Opinion on Orphan Drugs, 2014, 2, 1211-1219.	0.8	5
419	Critical points for an accurate human genome analysis. Human Mutation, 2017, 38, 912-921.	2.5	5
420	Co-presentation of adult-onset systemic lupus erythematosus and nemaline myopathy. Rheumatology, 2017, 56, 2034-2035.	1.9	5
421	Reproductive Cancer Risk Factors in Women With Myotonic Dystrophy (DM): Survey Data From the US and UK DM Registries. Frontiers in Neurology, 2019, 10, 1071.	2.4	5
422	De novo variant in SCN4A causes neonatal sodium channel myotonia with general muscle stiffness and respiratory failure. Neuromuscular Disorders, 2019, 29, 907-909.	0.6	5
423	237th ENMC International Workshop: GNE myopathy – current and future research Hoofddorp, The Netherlands, 14–16 September 2018. Neuromuscular Disorders, 2019, 29, 401-410.	0.6	5
424	Current Status of Gene Therapy for Muscle Diseases. Drug News and Perspectives, 2007, 20, 357.	1.5	5
425	Undiagnosed Genetic Muscle Disease in the North of England: an in Depth Phenotype Analysis. PLOS Currents, 2013, 5, .	1.4	5
426	Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement. Journal of Pathology, 2021, , .	4.5	5
427	Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of Congenital Myasthenic Syndrome. Frontiers in Molecular Neuroscience, 2020, 13, 594220.	2.9	5
428	Serum miRNAs as biomarkers for the rare types of muscular dystrophy. Neuromuscular Disorders, 2022, 32, 332-346.	0.6	5
429	Sarcoglycans take center stage in gene transfer therapy. Neurology, 2008, 71, 234-235.	1.1	4
430	Genomic integration of adenoviral gene transfer vectors following transduction of fertilized mouse oocytes. Transgenic Research, 2011, 20, 123-135.	2.4	4
431	Transition from childhood to adulthood in Duchenne muscular dystrophy (DMD). Orphanet Journal of Rare Diseases, 2012, 7, A8.	2.7	4
432	Intragenic <i>DOK7</i> deletion detected by whole-genome sequencing in congenital myasthenic syndromes. Neurology: Genetics, 2017, 3, e152.	1.9	4

#	Article	IF	CITATIONS
433	Patient Preferences for Treatments of Neuromuscular Diseases: A Systematic Literature Review. Journal of Neuromuscular Diseases, 2017, 4, 285-292.	2.6	4
434	Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo <i>PTEN</i> mutation. Neurology, 2018, 90, e1842-e1848.	1.1	4
435	How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features. NeuroMolecular Medicine, 2018, 20, 205-214.	3.4	4
436	Clinical Outcome Evaluations and CBT Response Prediction in Myotonic Dystrophy. Journal of Neuromuscular Diseases, 2021, 8, 1031-1046.	2.6	4
437	Distinct and Recognisable Muscle MRI Pattern in a Series of Adults Harbouring an Identical GMPPB Gene Mutation. Journal of Neuromuscular Diseases, 2022, 9, 95-109.	2.6	4
438	Expanding the Phenotypic Spectrum of ECEL1-Associated Distal Arthrogryposis. Children, 2021, 8, 909.	1.5	4
439	Change over time in ability to perform activities of daily living in myotonic dystrophy type 1. Journal of Neurology, 2020, 267, 3235-3242.	3.6	3
440	Congenital myasthenic syndrome in a cohort of patients with â€~double' seronegative myasthenia gravis. Arquivos De Neuro-Psiquiatria, 2021, , .	0.8	3
441	Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet Journal of Rare Diseases, 2022, 17, 29.	2.7	3
442	What message does the nuclear envelope hold?. Neurology, 2007, 68, 1879-1880.	1.1	2
443	Optimization of Internally Deleted Dystrophin Constructs. Human Gene Therapy Methods, 2016, 27, 174-186.	2.1	2
444	Mortality Cost of Duchenne Muscular Dystrophy. Global & Regional Health Technology Assessment, 2017, 4, grhta.5000260.	0.1	2
445	Compliance to care guidelines for Duchenne muscular dystrophy in Italy. Neuromuscular Disorders, 2018, 28, 100.	0.6	2
446	Severe congenital myasthenic syndrome associated with novel biallelic mutation of the CHRND gene. Neuromuscular Disorders, 2020, 30, 336-339.	0.6	2
447	Congenital myasthenic syndrome due to DOK7 mutation in a cohort of patients with â€~unexplained' limb-girdle muscular weakness. Journal of Clinical Neuroscience, 2020, 75, 195-198.	1.5	2
448	E-Health & Innovation to Overcome Barriers in Neuromuscular Diseases. Report from the 1st eNMD Congress: Nice, France, March 22-23, 2019. Journal of Neuromuscular Diseases, 2021, 8, 743-754.	2.6	2
449	Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. Journal of Neuromuscular Diseases, 2021, 8, 603-619.	2.6	2
450	Prospects of gene therapy for genetic skeletal muscle disease. Transfusion Science, 1996, 17, 53-61.	0.6	1

#	Article	IF	CITATIONS
451	A modified alignment of human and rodent 5′ untranslated sequences of the acetylcholine receptor epsilon subunit gene reveals additional regions of high homology. Neuromuscular Disorders, 2000, 10, 213.	0.6	1
452	Neuromuscular disorders and 2010: recent advances. Journal of Neurology, 2010, 257, 2117-2121.	3.6	1
453	Autoimmune and inherited disorders of neuromuscular transmission. , 0, , 453-470.		1
454	Becker and Duchenne muscular dystrophy: a two-way information process for therapies. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 5-6.	1.9	1
455	Metabolic stroke in childhood: Diagnostic approach and suggestions for therapy. Journal of Pediatric Neurology, 2015, 08, 321-332.	0.2	1
456	Facilitating orphan drug development: Proceedings of the TREAT-NMD International Conference, December 2015, Washington, DC, USA. Neuromuscular Disorders, 2017, 27, 693-701.	0.6	1
457	A <i>de novo</i> <scp><i>CSDE1</i></scp> variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents. American Journal of Medical Genetics, Part A, 2022, 188, 283-291.	1.2	1
458	Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biology, 2022, 19, 507-518.	3.1	1
459	Case Report: Advanced Skeletal Muscle Imaging in S-Adenosylhomocysteine Hydrolase Deficiency and Further Insight Into Muscle Pathology. Frontiers in Pediatrics, 2022, 10, 847445.	1.9	1
460	Collagen VI Regulates Motor Circuit Plasticity and Motor Performance by Cannabinoid Modulation. Journal of Neuroscience, 2022, 42, 1557-1573.	3.6	1
461	MUSCULAR DYSTROPHIES. , 2003, , 1142-1167.		0
462	Incomplete description of the current body of evidence of the health economics of Duchenne muscular dystrophy. Orphanet Journal of Rare Diseases, 2019, 14, 75.	2.7	0
463	Biomarkers in Duchenne and Becker muscular dystrophies. Muscle and Nerve, 2021, 64, 4-5.	2.2	0
464	Adenovirus Vectors Based on Human Adenovirus Type 19a Have High Potential for Human Muscle-Directed Gene Therapy. Human Gene Therapy, 2006, .	2.7	0
465	P 898. SMArtCARE: Longitudinal Data Collection of Patients with Spinal Muscular Atrophy in German-Speaking Countries. Neuropediatrics, 2018, 49, .	0.6	0
466	SMArtCARE Real-World Data on Drug Treatment for Spinal Muscular Atrophy. , 2021, 52, .		0
467	Noninvasive Imaging in Pediatric Spinal Muscular Atrophy Patients Using Multispectral Optoacoustic Tomography: A Proof-of-Concept Study. Neuropediatrics, 2021, 52, .	0.6	0
468	Editorial: Molecular Mechanisms Underlying Assembly and Maintenance of the Neuromuscular Junction. Frontiers in Molecular Neuroscience, 2021, 14, 797832.	2.9	0

#	Article	IF	CITATIONS
469	Editorial. Journal of Neuromuscular Diseases, 2014, 1, 1.	2.6	0
470	MYTHO: A novel regulator of autophagy and skeletal muscle health. FASEB Journal, 2022, 36, .	0.5	0