Michaela Sedlarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8291249/publications.pdf

Version: 2024-02-01

331670 361022 1,414 59 21 35 citations h-index g-index papers 60 60 60 1947 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnology Advances, 2014, 32, 230-241.	11.7	147
2	The role of nitric oxide in the germination of plant seeds and pollen. Plant Science, 2011, 181, 560-572.	3.6	121
3	Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms. Scientific Reports, 2018, 8, 13685.	3.3	70
4	Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. Journal of Experimental Botany, 2009, 60, 2701-2712.	4.8	68
5	Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Molecular Plant Pathology, 2009, 10, 501-513.	4.2	57
6	Diversity of defence mechanisms in plant–oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 2008, 122, 71-89.	1.7	56
7	Singlet oxygen scavenging activity of tocopherol and plastochromanol in <i><scp>A</scp>rabidopsis thaliana</i> : relevance to photooxidative stress. Plant, Cell and Environment, 2014, 37, 392-401.	5.7	54
8	Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Scientific Reports, 2017, 7, 9831.	3.3	49
9	Small CABâ€like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium <i>Synechocystis sp.</i> PCC 6803. Plant, Cell and Environment, 2012, 35, 806-818.	5.7	45
10	Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiology and Biochemistry, 2010, 48, 716-723.	5.8	42
11	Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Scientific Reports, 2016, 6, 20094.	3.3	41
12	Methodology of virulence screening and race characterization of <i>Plasmopara halstedii</i> , and resistance evaluation in sunflower – a review. Plant Pathology, 2017, 66, 171-185.	2.4	35
13	Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp European Journal of Plant Pathology, 2011, 129, 267-280.	1.7	32
14	Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1660.	3.6	32
15	Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici. European Journal of Plant Pathology, 2014, 138, 569-596.	1.7	27
16	Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide - Biology and Chemistry, 2017, 68, 68-76.	2.7	27
17	Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
18	Histochemical Detection and Role of Phenolic Compounds in the Defense Response of Lactuca spp. to Lettuce Downy Mildew (Bremia lactucae). Journal of Phytopathology, 2001, 149, 693-697.	1.0	24

#	Article	IF	CITATIONS
19	Dual role of nitric oxide in Solanum spp.–Oidium neolycopersici interactions. Environmental and Experimental Botany, 2011, 74, 37-44.	4.2	24
20	Oxidative Damage of U937 Human Leukemic Cells Caused by Hydroxyl Radical Results in Singlet Oxygen Formation. PLoS ONE, 2015, 10, e0116958.	2.5	24
21	Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant. PLoS ONE, 2017, 12, e0170715.	2.5	24
22	Reactive Oxygen Species Imaging in U937 Cells. Frontiers in Physiology, 2020, 11, 552569.	2.8	23
23	Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis. Plant Journal, 2018, 95, 848-861.	5.7	22
24	Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp Plant Physiology and Biochemistry, 2007, 45, 607-616.	5.8	21
25	MALDIâ€based intact spore mass spectrometry of downy and powdery mildews. Journal of Mass Spectrometry, 2012, 47, 978-986.	1.6	21
26	The formation of electronically excited species in the human multiple myeloma cell suspension. Scientific Reports, 2015, 5, 8882.	3.3	20
27	The effects of reactive nitrogen and oxygen species on the regeneration and growth of cucumber cells from isolated protoplasts. Plant Cell, Tissue and Organ Culture, 2012, 108, 237-249.	2.3	19
28	Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radical Biology and Medicine, 2020, 160, 894-907.	2.9	19
29	Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa $ ilde{A}$ — L. serriola hybrids and Bremia lactucae. European Journal of Plant Pathology, 2006, 115, 431-441.	1.7	17
30	First Report of Plasmopara halstedii New Races 705 and 715 on sunflower from the Czech Republic - Short Communication. Plant Protection Science, 2016, 52, 182-187.	1.4	17
31	Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Planta, 2018, 247, 1203-1215.	3.2	17
32	Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. Journal of Experimental Botany, 2010, 61, 2395-2401.	4.8	15
33	Data on detection of singlet oxygen, hydroxyl radical and organic radical in Arabidopsis thaliana. Data in Brief, 2018, 21, 2246-2252.	1.0	14
34	Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus. International Journal of Molecular Sciences, 2019, 20, 1448.	4.1	14
35	Organic radical imaging in plants: Focus on protein radicals. Free Radical Biology and Medicine, 2019, 130, 568-575.	2.9	13
36	Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH. International Journal of Molecular Sciences, 2019, 20, 4143.	4.1	12

#	Article	IF	Citations
37	Powdery Mildews on Trees and Shrubs in Botanical Gardens, Parks and Urban Green Areas in the Czech Republic. Forests, 2020, 11, 967.	2.1	10
38	Histological aspects of Cucumis melo PI 313970 resistance to Podosphaera xanthii and Golovinomyces cichoracearum. Journal of Plant Diseases and Protection, 2009, 116, 169-176.	2.9	9
39	Early and long-term responses of cucumber cells to high cadmium concentration are modulated by nitric oxide and reactive oxygen species. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	9
40	The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production. International Journal of Molecular Sciences, 2020, 21, 8109.	4.1	9
41	Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes. International Journal of Molecular Sciences, 2021, 22, 9963.	4.1	9
42	Pathogenic variability of <i>Plasmopara halstedii</i> infecting sunflower in the Czech Republic. Plant Pathology, 2018, 67, 136-144.	2.4	9
43	Amended description of the rarely reported bryophilous ascomycete Octospora svrcekii (Pyronemataceae) with notes on the phylogeny of the section Wrightoideae . Phytotaxa, 2020, 475, 1-17.	0.3	8
44	First report of <i>Erysiphe palczewskii</i> on <i>Caragana arborescens</i> in the Czech Republic. Plant Pathology, 2008, 57, 779-779.	2.4	7
45	The Role of Nitric Oxide in Development and Pathogenesis of Biotrophic Phytopathogens – Downy and Powdery Mildews. Advances in Botanical Research, 2016, 77, 263-283.	1.1	7
46	Re-Evaluation of Imaging Methods of Reactive Oxygen and Nitrogen Species in Plants and Fungi: Influence of Cell Wall Composition. Frontiers in Physiology, 2017, 8, 826.	2.8	7
47	Characterization of Protein Radicals in Arabidopsis. Frontiers in Physiology, 2019, 10, 958.	2.8	7
48	Identification of <i>Bremia lactucae</i> and <i>Oidium neolycopersici</i> proteins extracted for intact spore MALDI mass spectrometric biotyping. Electrophoresis, 2016, 37, 2940-2952.	2.4	6
49	Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. Plant Physiology and Biochemistry, 2020, 155, 297-310.	5.8	6
50	Review of tomato powdery mildew $\hat{a}\in$ a challenging problem for researchers, breeders and growers. Acta Horticulturae, 2017, , 107-116.	0.2	4
51	Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp Horticulture Research, 2021, 8, 34.	6.3	4
52	Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei. International Journal of Molecular Sciences, 2021, 22, 12369.	4.1	4
53	First report of rhododendron powdery mildew on Rhododendron spp. in the Czech Republic. Plant Pathology, 2007, 56, 354-354.	2.4	3
54	Tritium influence on morphology, reactive oxygen species production and catalase gene expression in Pseudendoclonium basilense and Stigeoclonium nanum (Chlorophyta). Fottea, 2017, 17, 127-135.	0.9	3

#	Article	IF	CITATION
55	Bioactive Compounds and Their Impact on Protein Modification in Human Cells. International Journal of Molecular Sciences, 2022, 23, 7424.	4.1	3
56	Pseudoplectania africana (Sarcosomataceae, Pezizales), a new species from South Africa. Bothalia, 2022, 52, .	0.3	1
57	Photorealistic Modeling of the Growth of Filamentous Specimens. Eurasip Journal on Advances in Signal Processing, 2007, 2008, .	1.7	O
58	Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp , 2010, , 135-148.		0
59	Diversity of defence mechanisms in plant–oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. , 2008, , 71-89.		0