
Dorit Ben-Shachar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8290340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Efficacy of Right Prefrontal Slow Repetitive Transcranial Magnetic Stimulation in Major Depression. Archives of General Psychiatry, 1999, 56, 315.	12.3	487
2	Ironâ€Melanin Complex in Substantia Nigra of Parkinsonian Brains: An Xâ€Ray Microanalysis. Journal of Neurochemistry, 1992, 59, 1168-1171.	3.9	304
3	Iron-Melanin Interaction and Lipid Peroxidation: Implications for Parkinson's Disease. Journal of Neurochemistry, 1991, 57, 1609-1614.	3.9	294
4	Dopamine Neurotoxicity: Inhibition of Mitochondrial Respiration. Journal of Neurochemistry, 1995, 64, 718-723.	3.9	257
5	Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. Journal of Neurochemistry, 2002, 83, 1241-1251.	3.9	199
6	Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochemical Pharmacology, 2003, 66, 489-494.	4.4	189
7	Neuroanatomical Pattern of Mitochondrial Complex I Pathology Varies between Schizophrenia, Bipolar Disorder and Major Depression. PLoS ONE, 2008, 3, e3676.	2.5	164
8	Mitochondria, Synaptic Plasticity, And Schizophrenia. International Review of Neurobiology, 2004, 59, 273-296.	2.0	160
9	Nutritional iron and dopamine binding sites in the rat brain. Pharmacology Biochemistry and Behavior, 1982, 17, 43-47.	2.9	140
10	Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia. Canadian Journal of Psychiatry, 2016, 61, 457-469.	1.9	132
11	Chronic repetitive transcranial magnetic stimulation alters Î ² -adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Research, 1999, 816, 78-83.	2.2	129
12	Perturbation in Mitochondrial Network Dynamics and in Complex I Dependent Cellular Respiration in Schizophrenia. Biological Psychiatry, 2011, 69, 980-988.	1.3	120
13	Long-term consequence of early iron-deficiency on dopaminergic neurotransmission in rats. International Journal of Developmental Neuroscience, 1986, 4, 81-88.	1.6	105
14	Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotoxicity Research, 2003, 5, 35-43.	2.7	103
15	Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity. Journal of Biological Chemistry, 2014, 289, 2318-2330.	3.4	97
16	Increased mitochondrial complex I activity in platelets of schizophrenic patients. International Journal of Neuropsychopharmacology, 1999, 2, 245-253.	2.1	92
17	Effect of Iron Chelators on Dopamine D2Receptors. Journal of Neurochemistry, 1985, 45, 999-1005.	3.9	85
18	Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophrenia Bulletin, 2018, 44, 432-442.	4.3	81

DORIT BEN-SHACHAR

#	Article	IF	CITATIONS
19	Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophrenia Research, 2017, 187, 3-10.	2.0	76
20	Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2. PLoS ONE, 2007, 2, e817.	2.5	72
21	Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: Relevance to dopamine pathology in schizophrenia. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 173-185.	1.0	69
22	DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology, 2010, 13, 347.	2.1	65
23	Schizophrenia: From the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World Journal of Biological Psychiatry, 2009, 10, 127-155.	2.6	64
24	Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation: relevance for major depression and antidepressant mechanisms. Journal of Neurochemistry, 2002, 83, 1054-1064.	3.9	63
25	Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: A FDG-PET study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2007, 31, 807-813.	4.8	59
26	Physical stress differs from psychosocial stress in the pattern and time-course of behavioral responses, serum corticosterone and expression of plasticity-related genes in the rat. Stress, 2009, 12, 412-425.	1.8	52
27	Alterations in cell adhesion molecule L1 and functionally related genes in major depression: A postmortem study. Biological Psychiatry, 2005, 57, 716-725.	1.3	50
28	Mitochondrial complex I as a novel target for intraneuronal DA: Modulation of respiration in intact cells. Biochemical Pharmacology, 2009, 78, 85-95.	4.4	49
29	Selective Alteration in Blood-Brain Barrier and Insulin Transport in Iron-Deficient Rats. Journal of Neurochemistry, 1988, 50, 1434-1437.	3.9	43
30	Iron, melanin and dopamine interaction: relevance to parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1993, 17, IN3-150.	4.8	43
31	The effects of bile acids on β-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochemical Pharmacology, 2000, 59, 1623-1628.	4.4	41
32	Platelets: A possible glance into brain biological processes in schizophrenia. World Journal of Psychiatry, 2012, 2, 124.	2.7	41
33	The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. Journal of Neural Transmission, 2009, 116, 1383-1396.	2.8	39
34	Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology. International Journal of Neuropsychopharmacology, 2012, 15, 869-882.	2.1	37
35	Increased hepatic and reduced prostatic prolactin (PRL) binding in iron deficiency and during neuroleptic treatment: Correlation with changes in serum PRL and testosterone. European Journal of Pharmacology, 1985, 109, 193-200.	3.5	36
36	Typical and Atypical Neuroleptics Induce Alteration in Bloodâ€Brain Barrier and Brain ⁵⁹ FeCl ₃ Uptake. Journal of Neurochemistry, 1994, 62, 1112-1118.	3.9	35

DORIT BEN-SHACHAR

#	Article	IF	CITATIONS
37	Modulation of frequency and duration of repetitive magnetic stimulation affects catecholamine levels and tyrosine hydroxylase activity in human neuroblastoma cells: implication for the antidepressant effect of rTMS. International Journal of Neuropsychopharmacology, 2003, 6, 233-241.	2.1	32
38	Increased mRNA levels of the mitochondrial complex I 75-kDa subunit. European Child and Adolescent Psychiatry, 2006, 15, 504-507.	4.7	32
39	Dexamethasone enhances the norepinephrine-induced ERK/MAPK intracellular pathway possibly via dysregulation of the α2-adrenergic receptor: Implications for antidepressant drug mechanism of action. European Journal of Cell Biology, 2010, 89, 712-722.	3.6	27
40	Neuroleptic-Induced Supersensitivity and Brain Iron: I. Iron Deficiency and Neuroleptic-Induced Dopamine D2Receptor Supersensitivity. Journal of Neurochemistry, 1990, 54, 1136-1141.	3.9	25
41	Improved Generation of Induced Pluripotent Stem Cells From Hair Derived Keratinocytes – A Tool to Study Neurodevelopmental Disorders as ADHD. Frontiers in Cellular Neuroscience, 2018, 12, 321.	3.7	22
42	NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Molecular Psychiatry, 2020, 25, 805-820.	7.9	22
43	Paroxetine binding in aggressive schizophrenic patients. Psychiatry Research, 2000, 94, 77-81.	3.3	17
44	Norepinephrine–glucocorticoids interaction does not annul the opposite effects of the individual treatments on cellular plasticity in neuroblastoma cells. European Journal of Pharmacology, 2008, 596, 14-24.	3.5	16
45	Genetic analysis of nitric oxide synthase 1 variants in schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1318-1328.	1.7	16
46	Mitochondrial Targeted Therapies: Where Do We Stand in Mental Disorders?. Biological Psychiatry, 2018, 83, 770-779.	1.3	16
47	Prevention of neuroleptic-induced dopamine D2 receptor supersensitivity by chronic iron salt treatment. European Journal of Pharmacology, 1991, 202, 177-183.	3.5	15
48	The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. Journal of Neural Transmission, 2020, 127, 159-168.	2.8	15
49	Mitochondrial Complex I Subunits are Altered in Rats with Neonatal Ventral Hippocampal Damage but not in Rats Exposed to Oxygen Restriction at Neonatal Age. Journal of Molecular Neuroscience, 2009, 38, 143-151.	2.3	14
50	β-endorphin degradation and the individual reactivity to traumatic stress. European Neuropsychopharmacology, 2013, 23, 1779-1788.	0.7	11
51	The role of branched chain amino acid and tryptophan metabolism in rat's behavioral diversity: Intertwined peripheral and brain effects. European Neuropsychopharmacology, 2015, 25, 1695-1705.	0.7	11
52	Characterization of the hepatic prolactin receptors induced by chronic iron deficiency and neuroleptics. European Journal of Pharmacology, 1986, 122, 259-267.	3.5	10
53	Dexamethasone in the presence of desipramine enhances MAPK/ERK1/2 signaling possibly via its interference with β-arrestin. Journal of Neural Transmission, 2014, 121, 289-298.	2.8	10
54	Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Scientific Reports, 2020, 10, 12258.	3.3	9

DORIT BEN-SHACHAR

#	Article	IF	CITATIONS
55	Major depression as a disorder of serotonin resistance: inference from diabetes mellitus type II. International Journal of Neuropsychopharmacology, 2007, 10, 839-50.	2.1	6
56	Entacapone augmentation of antipsychotic treatment in schizophrenic patients with negative symptoms; a double-blind placebo-controlled study. International Journal of Neuropsychopharmacology, 2014, 17, 337-340.	2.1	6
57	Impaired heme metabolism in schizophrenia-derived cell lines and in a rat model of the disorder: Possible involvement of mitochondrial complex I. European Neuropsychopharmacology, 2019, 29, 577-589.	0.7	6
58	Enhancing effects of fluoride-containing ceramic implants on bone formation in the dog femur. Journal of Cranio-Maxillo-Facial Surgery, 1988, 16, 40-45.	1.7	5
59	Early postnatal interference with the expression of multiple Sp1 regulated genes leads to disparate behavioral response to sub-chronic and chronic stress in rats. Psychoneuroendocrinology, 2013, 38, 2173-2183.	2.7	5
60	Gene expression dynamics following mithramycin treatment: A possible model for postâ€chemotherapy cognitive impairment. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 1028-1037.	1.9	4
61	Neuromelanin may Mediate Neurotoxicity via its Interaction with Redox Active Iron. , 2000, , 211-218.		4
62	Update of Mitochondrial Network Analysis by Imaging: Proof of Technique in Schizophrenia. Methods in Molecular Biology, 2021, 2277, 187-201.	0.9	2
63	Mitochondrial Complex I as a Possible Novel Peripheral Biomarker for Schizophrenia. , 2009, , 71-83.		2
64	Analysis of Mitochondrial Network by Imaging: Proof of Technique in Schizophrenia. Methods in Molecular Biology, 2015, 1265, 425-439.	0.9	2
65	Heme metabolism, mitochondria, and complex I in neuropsychiatric disorders. , 2020, , 173-207.		1
66	Gene environment interaction in periphery and brain converge to modulate behavioral outcomes: Insights from the SP1 transient early in life interference rat model. World Journal of Psychiatry, 2016, 6, 294.	2.7	1
67	Iron and Parkinson's Disease. , 1994, , 63-78.		1
68	Brain Iron and Dopamine D2 Receptors in the Rat. Advances in Behavioral Biology, 1986, , 263-269.	0.2	0