
ElÃ-as R Olivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289709/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Strategies for Efficient and Sustainable Production of Medium-Chain Length Polyhydroxyalkanoates in Pseudomonads. , 2021, , 581-660.		0
2	Catabolism of biogenic amines in <i>Pseudomonas</i> species. Environmental Microbiology, 2020, 22, 1174-1192.	3.8	27
3	A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Applied Microbiology and Biotechnology, 2019, 103, 8087-8103.	3.6	13
4	Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes, 2019, 10, 512.	2.4	56
5	Histamine catabolism in <i>Pseudomonas putida</i> U: identification of the genes, catabolic enzymes and regulators. Environmental Microbiology, 2018, 20, 1828-1841.	3.8	11
6	Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21. Canadian Journal of Biotechnology, 2018, 2, 88-99.	0.3	6
7	Plasmids containing the same origin of replication are useful tools to perform biotechnological studies in Pseudomonas putida U and in E. coli DH10B. Canadian Journal of Biotechnology, 2017, 1, 38-43.	0.3	1
8	Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas. Methods in Molecular Biology, 2017, 1645, 109-142.	0.9	1
9	Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. American Journal of Veterinary Research, 2016, 77, 779-788.	0.6	34
10	lkaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Scientific Reports, 2015, 5, 14692.	3.3	21
11	The loss of function of <scp>PhaC</scp> 1 is a survival mechanism that counteracts the stress caused by the overproduction of polyâ€3â€hydroxyalkanoates in <scp><i>P</i></scp> <i>seudomonas putida</i> i [°] <scp><i>fadBA</i></scp> . Environmental Microbiology, 2015, 17, 3182-3194.	3.8	4
12	The phasin PhaF controls bacterial shape and size in a network-forming strain of Pseudomonas putida. Journal of Biotechnology, 2015, 199, 17-20.	3.8	5
13	Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum <i>tri4</i> Gene in T. harzianum. Applied and Environmental Microbiology, 2015, 81, 6355-6366.	3.1	37
14	Functional analyses of three acylâ€ <scp>CoA</scp> synthetases involved in bile acid degradation in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>DOC</scp> 21. Environmental Microbiology, 2015, 17, 47-63.	3.8	28
15	Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Applied Microbiology and Biotechnology, 2013, 97, 891-904.	3.6	31
16	The 3,4â€dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in <i>Pseudomonas putida</i> U. Environmental Microbiology, 2010, 12, 1684-1704.	3.8	31
17	The tick saliva immunosuppressor, Salp15, contributes to Th17-induced pathology during Experimental Autoimmune Encephalomyelitis. Biochemical and Biophysical Research Communications, 2010, 402, 105-109.	2.1	11
18	Unusual PHA Biosynthesis. Microbiology Monographs, 2010, , 133-186.	0.6	22

2

ELÃAS R OLIVERA

#	Article	IF	CITATIONS
19	Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environmental Microbiology, 2008, 10, 413-432.	3.8	43
20	The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochemical and Biophysical Research Communications, 2008, 367, 41-46.	2.1	10
21	p38 Mitogen-Activated Protein Kinase Controls NF-κB Transcriptional Activation and Tumor Necrosis Factor Alpha Production through RelA Phosphorylation Mediated by Mitogen- and Stress-Activated Protein Kinase 1 in Response to Borrelia burgdorferi Antigens. Infection and Immunity, 2007, 75, 270-277.	2.2	131
22	c-Jun N-Terminal Kinase 1 Is Required for Toll-Like Receptor 1 Gene Expression in Macrophages. Infection and Immunity, 2007, 75, 5027-5034.	2.2	23
23	Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environmental Microbiology, 2007, 9, 737-751.	3.8	47
24	The Catabolism of Phenylacetic Acid and Other Related Molecules in Pseudomonas putida U. , 2007, , 147-192.		4
25	Acetyl-CoA synthetase fromPseudomonas putidaU is the only acyl-CoA activating enzyme induced by acetate in this bacterium. FEMS Microbiology Letters, 2006, 260, 36-46.	1.8	13
26	A genetically engineered strain ofPseudomonas putidaas a useful tool for identifying new therapeutic herbicides. FEMS Microbiology Letters, 2005, 249, 297-302.	1.8	0
27	Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 2005, 67, 97-105.	3.6	56
28	A Two-component Hydroxylase Involved in the Assimilation of 3-Hydroxyphenyl Acetate in Pseudomonas putida. Journal of Biological Chemistry, 2005, 280, 26435-26447.	3.4	45
29	Strategy for Cloning Large Gene Assemblages as Illustrated Using the Phenylacetate and Polyhydroxyalkanoate Gene Clusters. Applied and Environmental Microbiology, 2004, 70, 5019-5025.	3.1	13
30	The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of I-Phenylalanine, I-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. Journal of Bacteriology, 2004, 186, 5062-5077.	2.2	225
31	Bioplastics from microorganisms. Current Opinion in Microbiology, 2003, 6, 251-260.	5.1	315
32	Microbial Synthesis of Poly(β-hydroxyalkanoates) Bearing Phenyl Groups fromPseudomonasputida:Â Chemical Structure and Characterization. Biomacromolecules, 2001, 2, 562-567.	5.4	45
33	Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environmental Microbiology, 2001, 3, 612-618.	3.8	79
34	Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Molecular Microbiology, 2001, 39, 863-874.	2.5	83
35	The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Molecular Microbiology, 2001, 39, 1434-1442.	2.5	153
36	A New Class of Glutamate Dehydrogenases (GDH). Journal of Biological Chemistry, 2000, 275, 39529-39542.	3.4	74

ELÃAS R OLIVERA

#	Article	IF	CITATIONS
37	Phenylacetyl-Coenzyme A Is the True Inducer of the Phenylacetic Acid Catabolism Pathway in Pseudomonas putida U. Applied and Environmental Microbiology, 2000, 66, 4575-4578.	3.1	31
38	From a Short Amino Acidic Sequence to the Complete Gene. Biochemical and Biophysical Research Communications, 2000, 272, 477-479.	2.1	7
39	Novel Biodegradable Aromatic Plastics from a Bacterial Source. Journal of Biological Chemistry, 1999, 274, 29228-29241.	3.4	116
40	Catabolism of Phenylacetic Acid in Escherichia coli. Journal of Biological Chemistry, 1998, 273, 25974-25986.	3.4	205
41	Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6419-6424.	7.1	202
42	Molecular Cloning and Expression in Different Microbes of the DNA Encoding Pseudomonas putida U Phenylacetyl-CoA Ligase:. Journal of Biological Chemistry, 1996, 271, 33531-33538.	3.4	42
43	Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways. FEBS Journal, 1994, 221, 375-381.	0.2	34
44	Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is	2.2	50

a catabolic intermediate. Journal of Bacteriology, 1994, 176, 7667-7676.