
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289532/publications.pdf Version: 2024-02-01

ΖΗΛΝ-ΥΠΝ ΟΠΟ

#	Article	IF	CITATIONS
1	Development of a general bioluminescent activity assay for peptide ligases. FEBS Journal, 2022, 289, 5241-5258.	4.7	2
2	The NanoBiT-Based Homogenous Ligand–Receptor Binding Assay. Methods in Molecular Biology, 2022, , 139-153.	0.9	2
3	LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids, 2021, 53, 939-949.	2.7	15
4	Unusual orthologs shed new light on the binding mechanism of ghrelin to its receptor GHSR1a. Archives of Biochemistry and Biophysics, 2021, 704, 108872.	3.0	7
5	Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie, 2020, 177, 117-126.	2.6	1
6	Identifying key residues and key interactions for the binding of LEAP2 to receptor GHSR1a. Biochemical Journal, 2020, 477, 3199-3217.	3.7	14
7	Functionality of an absolutely conserved glycine residue in the chimeric relaxin family peptide R3/I5. Amino Acids, 2019, 51, 619-626.	2.7	0
8	ldentifying the binding mechanism of <scp>LEAP</scp> 2 to receptor <scp>GHSR</scp> 1a. FEBS Journal, 2019, 286, 1332-1345.	4.7	50
9	Exploring electrostatic interactions of relaxin family peptide receptor 3 and 4 with ligands using a NanoBiT-based binding assay. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 776-786.	2.6	8
10	Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Archives of Biochemistry and Biophysics, 2018, 646, 24-30.	3.0	2
11	Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids, 2018, 50, 1111-1119.	2.7	16
12	Overexpression of relaxin family peptide receptor 3 in Escherichia coli and characterization of its ligand binding properties. Process Biochemistry, 2018, 69, 131-135.	3.7	2
13	Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie, 2018, 154, 77-85.	2.6	6
14	Interaction mechanism of insulin-like peptide 5 with relaxin family peptide receptor 4. Archives of Biochemistry and Biophysics, 2017, 619, 27-34.	3.0	14
15	A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids, 2017, 49, 895-903.	2.7	10
16	Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin. Scientific Reports, 2017, 7, 3294.	3.3	12
17	Development of a selective agonist for relaxin family peptide receptor 3. Scientific Reports, 2017, 7, 3230.	3.3	9
18	Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation. Amino Acids, 2017, 49, 1611-1617.	2.7	14

#	Article	IF	CITATIONS
19	A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3. Archives of Biochemistry and Biophysics, 2016, 604, 113-120.	3.0	5
20	Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4. Scientific Reports, 2016, 6, 29648.	3.3	20
21	Novel bioluminescent binding assays for interaction studies of protein/peptide hormones with their receptors. Amino Acids, 2016, 48, 1151-1160.	2.7	10
22	Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding. Amino Acids, 2016, 48, 2227-2236.	2.7	22
23	Bioluminescent Ligand–Receptor Binding Assays for Protein or Peptide Hormones. Methods in Molecular Biology, 2016, 1461, 65-90.	0.9	1
24	Application of the novel bioluminescent ligand–receptor binding assay to relaxin-RXFP1 system for interaction studies. Amino Acids, 2016, 48, 1099-1107.	2.7	15
25	Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family. PLoS ONE, 2016, 11, e0159263.	2.5	7
26	The insulinotrophic effect of insulin-like peptide 5 <i>inÂvitro</i> and <i>inÂvivo</i> . Biochemical Journal, 2015, 466, 467-473.	3.7	44
27	Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model. Amino Acids, 2015, 47, 2237-2243.	2.7	19
28	Secretory overexpression and isotopic labeling of the chimeric relaxin family peptide R3/I5 in Pichia pastoris. Amino Acids, 2015, 47, 1117-1125.	2.7	2
29	Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones: Using erythropoietin as a model. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 311-316.	3.8	19
30	Efficient overexpression of human interleukin-6 in Escherichia coli using nanoluciferase as a fusion partner. Process Biochemistry, 2015, 50, 1618-1622.	3.7	3
31	Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 688-694.	2.6	10
32	The electrostatic interactions of relaxinâ€3 with receptor <scp>RXFP</scp> 4 and the influence of its <scp>B</scp> â€chain <scp>C</scp> â€terminal conformation. FEBS Journal, 2014, 281, 2927-2936.	4.7	17
33	Identification of important residues of insulin-like peptide 5 and its receptor RXFP4 for ligand–receptor interactions. Archives of Biochemistry and Biophysics, 2014, 558, 127-132.	3.0	23
34	Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor. Biochimie, 2014, 106, 140-148.	2.6	21
35	The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3. Amino Acids, 2014, 46, 1393-1402.	2.7	28
36	A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase. Biochimie, 2013, 95, 2454-2459.	2.6	27

#	Article	IF	CITATIONS
37	A convenient method for europiumâ€labeling of a recombinant chimeric relaxin family peptide R3/I5 for receptorâ€binding assays. Journal of Peptide Science, 2013, 19, 350-354.	1.4	23
38	A convenient luminescence assay of ferroportin internalization to study its interaction with hepcidin. FEBS Journal, 2013, 280, 1773-1781.	4.7	20
39	Recombinant expression, different downstream processing of the disulfide-rich anti-tumor peptide Ranpirnase and its effect on the growth of human glioma cell line SHG-44. Biomedical Reports, 2013, 1, 747-750.	2.0	8
40	Design, recombinant preparation and europium-labeling of a fully active easily-labeled INSL3 analog for receptor-binding assays. Process Biochemistry, 2012, 47, 1856-1860.	3.7	8
41	Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies. Amino Acids, 2012, 43, 983-992.	2.7	17
42	Design, recombinant expression and convenient Aâ€chain Nâ€terminal europiumâ€labelling of a fully active human relaxinâ€3 analogue. FEBS Journal, 2012, 279, 1505-1512.	4.7	18
43	Design, recombinant expression and in vitro maturation of human insulin-like peptide 6 and a biotin-labeled analogue. Process Biochemistry, 2011, 46, 1243-1247.	3.7	3
44	Design and recombinant expression of insulin-like peptide 5 precursors and the preparation of mature human INSL5. Amino Acids, 2010, 39, 1343-1352.	2.7	28
45	In Vitro Degradation of Insulin-like Peptide 3 by Insulin-degrading Enzyme. Protein Journal, 2010, 29, 93-98.	1.6	2
46	Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides, 2010, 31, 1001-1006.	2.4	14
47	A simple approach for the preparation of mature human relaxin-3. Peptides, 2010, 31, 2083-2088.	2.4	19
48	Recombinant expression of an insulinâ€like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3. FEBS Journal, 2009, 276, 5203-5211.	4.7	15
49	Mutational Analysis of the Absolutely Conserved B8Gly: Consequence on Foldability and Activity of Insulin. Acta Biochimica Et Biophysica Sinica, 2005, 37, 673-679.	2.0	16
50	Replacement of the interchain disulfide bridge-forming amino acids A7 and B7 by glutamate impairs the structure and activity of insulin. Biological Chemistry, 2004, 385, 1171-1175.	2.5	9
51	Mutagenesis of the three conserved valine residues: consequence on the foldability of insulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1699, 103-109.	2.3	5
52	Contribution of the Absolutely Conserved B8Gly to the Foldability of Insulin. Biological Chemistry, 2003, 384, 805-9.	2.5	13
53	In Vitro Evolution of Amphioxus Insulin-like Peptide to Mammalian Insulin. Biochemistry, 2002, 41, 10603-10607.	2.5	12
54	The Different Folding Behavior of Insulin and Insulin-like Growth Factor 1 Is Mainly Controlled by Their B-Chain/Domain. Biochemistry, 2002, 41, 1556-1567.	2.5	35

#	Article	IF	CITATIONS
55	The Different Energetic State of the Intra A-Chain/Domain Disulfide of Insulin and Insulin-like Growth Factor 1 Is Mainly Controlled by Their B-Chain/Domain. Biochemistry, 2002, 41, 10585-10592.	2.5	17
56	Mutational Analysis of the Three Conserved Valine Residues of Insulin and a Proposal of "Isosteric Residue". IUBMB Life, 2001, 52, 309-314.	3.4	10
57	Unfolding of Recombinant Single-chain Insulin in Denaturants Containing Thiol Reagents. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2001, 33, 431-436.	0.1	Ο