
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8288249/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Critical Reviews in Food Science and Nutrition, 2023, 63, 5247-5267.                                                                                             | 5.4 | 4         |
| 2  | Mutations in Amino Acid Residues of <i>Limosilactobacillus reuteri</i> 121 GtfB<br>4,6-α-Glucanotransferase that Affect Reaction and Product Specificity. Journal of Agricultural and<br>Food Chemistry, 2022, 70, 1952-1961.                                                         | 2.4 | 3         |
| 3  | Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugarâ€Based Molecules<br>that Target Bacterial Glucosyltransferase. ChemMedChem, 2021, 16, 113-123.                                                                                                     | 1.6 | 6         |
| 4  | Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects. Journal of Dairy Science, 2021, 104, 5056-5068.                                                                           | 1.4 | 3         |
| 5  | Extraction and Quantitative Analysis of Goat Milk Oligosaccharides: Composition, Variation,<br>Associations, and 2′-FL Variability. Journal of Agricultural and Food Chemistry, 2021, 69, 7851-7862.                                                                                  | 2.4 | 11        |
| 6  | GtfC Enzyme of <i>Geobacillus</i> sp. 12AMOR1 Represents a Novel Thermostable Type of GH70<br>4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 → 6)/(α1 → 4) α-Glucan and Delays Bread<br>Staling. Journal of Agricultural and Food Chemistry, 2021, 69, 9859-9868. | 2.4 | 7         |
| 7  | 2′-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. Journal of Functional Foods, 2021, 85, 104630.                                                                                                | 1.6 | 8         |
| 8  | Insights into Broad-Specificity Starch Modification from the Crystal Structure of<br><i>Limosilactobacillus Reuteri</i> NCC 2613 4,6-α-Glucanotransferase GtfB. Journal of Agricultural and<br>Food Chemistry, 2021, 69, 13235-13245.                                                 | 2.4 | 14        |
| 9  | Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 2020, 60, 123-146.                                                                                | 5.4 | 40        |
| 10 | Dynamic Temporal Variations in Bovine Lactoferrin Glycan Structures. Journal of Agricultural and<br>Food Chemistry, 2020, 68, 549-560.                                                                                                                                                | 2.4 | 21        |
| 11 | Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile.<br>International Dairy Journal, 2020, 110, 104814.                                                                                                                                   | 1.5 | 6         |
| 12 | Structures, physico-chemical properties, production and (potential) applications of sucrose-derived<br>α-d-glucans synthesized by glucansucrases. Carbohydrate Polymers, 2020, 249, 116818.                                                                                           | 5.1 | 24        |
| 13 | Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to<br>Human Milk Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 13469-13485.                                                                                  | 2.4 | 52        |
| 14 | Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing<br>Efficacy With Chloroquine. Frontiers in Immunology, 2020, 11, 790.                                                                                                              | 2.2 | 12        |
| 15 | In Depth Analysis of the Contribution of Specific Glycoproteins to the Overall Bovine Whey N-Linked Glycoprofile. Journal of Agricultural and Food Chemistry, 2020, 68, 6544-6553.                                                                                                    | 2.4 | 11        |
| 16 | Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by β-Galactosidases<br>from Lactic Acid Bacteria and Bifidobacteria. Journal of Agricultural and Food Chemistry, 2020, 68,<br>4437-4446.                                                                   | 2.4 | 14        |
| 17 | The impact of oligosaccharide content, glycosidic linkages and lactose content of<br>galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food and<br>Function, 2020, 11, 3506-3515.                                                              | 2.1 | 21        |
| 18 | Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and<br>Branching Sucrase Enzymes. Journal of Agricultural and Food Chemistry, 2020, 68, 6664-6671.                                                                                            | 2.4 | 18        |

LUBBERT DIJKHUIZEN

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its<br>taste profile. Food Chemistry, 2019, 272, 653-662.                                                                          | 4.2 | 30        |
| 20 | Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate Research, 2019, 479, 13-22.                                                                                                                       | 1.1 | 16        |
| 21 | Synthesis and Characterization of Sialylated Lactose- and Lactulose-Derived Oligosaccharides by<br><i>Trypanosoma cruzi</i> Trans-sialidase. Journal of Agricultural and Food Chemistry, 2019, 67,<br>3469-3479.                    | 2.4 | 10        |
| 22 | Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural and Food Chemistry, 2019, 67, 13969-13977.                                  | 2.4 | 29        |
| 23 | Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. Journal of Structural Biology, 2019, 205, 1-10.  | 1.3 | 31        |
| 24 | Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Applied Microbiology and Biotechnology, 2019, 103, 707-718.                                                                  | 1.7 | 5         |
| 25 | Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product<br>specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry, 2018, 253, 236-246.                           | 4.2 | 26        |
| 26 | Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports, 2018, 8, 1516.                                       | 1.6 | 27        |
| 27 | Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans<br>from starch and sucrose. Biotechnology Advances, 2018, 36, 196-207.                                                             | 6.0 | 68        |
| 28 | Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 2018, 8, 16790.                                                                                   | 1.6 | 28        |
| 29 | Mutational Analysis of the Role of the Glucansucrase Gtf180-ΔN Active Site Residues in Product and<br>Linkage Specificity with Lactose as Acceptor Substrate. Journal of Agricultural and Food Chemistry,<br>2018, 66, 12544-12554. | 2.4 | 6         |
| 30 | Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2018, 470, 57-63.                                                | 1.1 | 5         |
| 31 | Cross-Feeding among Probiotic Bacterial Strains on Prebiotic Inulin Involves the Extracellular<br><i>exo</i> -Inulinase of Lactobacillus paracasei Strain W20. Applied and Environmental Microbiology,<br>2018, 84, .               | 1.4 | 45        |
| 32 | Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two<br>catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology, 2018,<br>102, 7935-7950.            | 1.7 | 22        |
| 33 | Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase<br>enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 2018, 465, 58-65.                                        | 1.1 | 12        |
| 34 | Dietary Nâ€Glycans from Bovine Lactoferrin and TLR Modulation. Molecular Nutrition and Food<br>Research, 2018, 62, 1700389.                                                                                                         | 1.5 | 31        |
| 35 | 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H.<br>Scientific Reports, 2017, 7, 39761.                                                                                       | 1.6 | 42        |
| 36 | Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 2017, 7, 40478.                                               | 1.6 | 41        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from<br>α-Amylases in Oral Bacteria. Structure, 2017, 25, 231-242.                                                                 | 1.6 | 45        |
| 38 | Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 2017, 225, 230-238.                                 | 4.2 | 67        |
| 39 | Engineering of the <i>Bacillus circulans</i> β-Galactosidase Product Specificity. Biochemistry, 2017, 56,<br>704-711.                                                                                                           | 1.2 | 30        |
| 40 | Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180<br>glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research, 2017, 440-441, 51-62.                                          | 1.1 | 19        |
| 41 | Draft Genome Sequence of Lactobacillus reuteri 121, a Source of α-Glucan and β-Fructan<br>Exopolysaccharides. Genome Announcements, 2017, 5, .                                                                                  | 0.8 | 3         |
| 42 | Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology, 2017, 101, 4495-4505.                                                           | 1.7 | 6         |
| 43 | A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Scientific<br>Reports, 2017, 7, 44230.                                                                                                | 1.6 | 32        |
| 44 | Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Scientific Reports, 2017, 7, 9947.                                   | 1.6 | 27        |
| 45 | Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2017, 449, 59-64.                                        | 1.1 | 13        |
| 46 | Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chemistry, 2017, 217, 81-90.                                            | 4.2 | 33        |
| 47 | Molecular characterization of a Rhodococcus jostii RHA1 γ-butyrolactone(-like) signalling molecule<br>and its main biosynthesis gene gblA. Scientific Reports, 2017, 7, 17743.                                                  | 1.6 | 10        |
| 48 | The evolutionary origin and possible functional roles of FNIII domains in two Microbacterium aurum<br>B8.A granular starch degrading enzymes, and in other carbohydrate acting enzymes. Amylase, 2017, 1,<br>1-11.              | 0.7 | 19        |
| 49 | Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC<br>Genomics, 2017, 18, 593.                                                                                                      | 1.2 | 58        |
| 50 | 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol<br>Cofactor. Frontiers in Microbiology, 2017, 8, 1110.                                                                             | 1.5 | 11        |
| 51 | Biochemical Characterization of the Functional Roles of Residues in the Active Site of the<br>β-Galactosidase from <i>Bacillus circulans</i> ATCC 31382. Biochemistry, 2017, 56, 3109-3118.                                     | 1.2 | 12        |
| 52 | Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces<br>viridochromogenes DSM40736 (Tü494). Microbiology (United Kingdom), 2017, 163, 1030-1041.                                                | 0.7 | 14        |
| 53 | Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products<br>representing a new glycoside hydrolase 70 subfamily of 4,6-î±-glucanotransferase enzymes. PLoS ONE,<br>2017, 12, e0172622. | 1.1 | 26        |
| 54 | Carbohydrateâ€binding module 74 is a novel starchâ€binding domain associated with large and<br>multidomain αâ€amylase enzymes. FEBS Journal, 2016, 283, 2354-2368.                                                              | 2.2 | 28        |

| #  | Article                                                                                                                                                                                                                                                                                               | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 55 | Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuterans<br>Lactobacillus reuteri. Scientific Reports, 2016, 6, 35261.                                                                                                                                           | ucrase of<br>1.6 | 17        |
| 56 | Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization. Scientific Reports, 2016, 6, 36100.                                                                                           | 1.6              | 11        |
| 57 | Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes,<br>and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences,<br>2016, 73, 2681-2706.                                                                   | 2.4              | 64        |
| 58 | Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydrate Polymers, 2016, 151, 29-39.                                                                                                                                      | 5.1              | 10        |
| 59 | Modification of linear (β1→3)-linked gluco-oligosaccharides with a novel recombinant<br>β-glucosyltransferase ( <i>trans</i> -β-glucosidase) enzyme from <i>Bradyrhizobium diazoefficiens</i> .<br>Glycobiology, 2016, 26, 1157-1170.                                                                 | 1.3              | 8         |
| 60 | Stevia Glycosides. Advances in Carbohydrate Chemistry and Biochemistry, 2016, 73, 1-72.                                                                                                                                                                                                               | 0.4              | 65        |
| 61 | Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved<br>glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology, 2016, 100,<br>7529-7539.                                                                                   | 1.7              | 17        |
| 62 | The Exiguobacteriumsibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes. Applied and Environmental Microbiology, 2016, 82, 756-766.                                                                                                   | 1.4              | 38        |
| 63 | Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products.<br>Carbohydrate Research, 2016, 425, 48-58.                                                                                                                                                           | 1.1              | 75        |
| 64 | <i>Lactobacillus reuteri</i> Strains Convert Starch and Maltodextrins into Homoexopolysaccharides<br>Using an Extracellular and Cell-Associated 4,6-α-Glucanotransferase. Journal of Agricultural and Food<br>Chemistry, 2016, 64, 2941-2952.                                                         | 2.4              | 27        |
| 65 | The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside<br>hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from<br>maltodextrins and starch. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1224-1236. | 1.1              | 39        |
| 66 | Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from <i>Lactobacillus reuteri</i> and Sucrose as Donor Substrate. Bioconjugate Chemistry, 2016, 27, 937-946.                                                                                                                             | 1.8              | 16        |
| 67 | Synthesis of New Hyperbranched α-Glucans from Sucrose by <i>Lactobacillus reuteri</i> 180<br>Glucansucrase Mutants. Journal of Agricultural and Food Chemistry, 2016, 64, 433-442.                                                                                                                    | 2.4              | 25        |
| 68 | Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of<br>Aspergillus niger Using Developmental Mutants â^†brlA and â^†flbA. PLoS ONE, 2015, 10, e0116269.                                                                                                      | 1.1              | 22        |
| 69 | Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydrate Research, 2015, 407, 73-78.                                                                                                                                    | 1.1              | 16        |
| 70 | Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily<br>impairs its polysaccharide-synthesizing ability. Applied Microbiology and Biotechnology, 2015, 99,<br>5885-5894.                                                                               | 1.7              | 26        |
| 71 | Characterization of the starvation-induced chitinase CfcA and $\hat{l}\pm$ -1,3-glucanase AgnB of Aspergillus niger. Applied Microbiology and Biotechnology, 2015, 99, 2209-2223.                                                                                                                     | 1.7              | 14        |
| 72 | A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside<br>production. Applied Microbiology and Biotechnology, 2015, 99, 7101-7113.                                                                                                                              | 1.7              | 8         |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohydrate Research, 2015, 414, 85-92.                                                                                                | 1.1 | 18        |
| 74 | Enzymatic Decoration of Prebiotic Galacto-oligosaccharides (Vivinal GOS) with Sialic Acid<br>UsingTrypanosoma cruzitrans-Sialidase and Two Bovine Sialoglycoconjugates as Donor Substrates.<br>Journal of Agricultural and Food Chemistry, 2015, 63, 5976-5984. | 2.4 | 15        |
| 75 | Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with<br>Specificity for Decorated Arabinogalactans. Journal of Molecular Biology, 2015, 427, 3935-3946.                                                           | 2.0 | 18        |
| 76 | Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut<br>Symbiont Bacteroides thetaiotaomicron. Applied and Environmental Microbiology, 2015, 81, 3973-3983.                                                               | 1.4 | 49        |
| 77 | Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of<br>4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Applied and<br>Environmental Microbiology, 2015, 81, 7223-7232.         | 1.4 | 54        |
| 78 | Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. BMC Biotechnology, 2015, 15, 49.                                                                                                      | 1.7 | 15        |
| 79 | Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the<br>Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180. Journal of Biological<br>Chemistry, 2015, 290, 30131-30141.                    | 1.6 | 31        |
| 80 | Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a<br>Modular α-Amylase Enzyme System with FNIII and CBM25 Domains. Applied and Environmental<br>Microbiology, 2015, 81, 6610-6620.                                    | 1.4 | 29        |
| 81 | Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a<br>mutant cytochrome P450 BM3 enzyme. Applied Microbiology and Biotechnology, 2015, 99, 4713-4721.                                                           | 1.7 | 25        |
| 82 | Residue Leu940 Has a Crucial Role in the Linkage and Reaction Specificity of the Glucansucrase GTF180<br>of the Probiotic Bacterium Lactobacillus reuteri 180. Journal of Biological Chemistry, 2014, 289,<br>32773-32782.                                      | 1.6 | 33        |
| 83 | Biochemical characterization of mutants in the active site residues of the βâ€galactosidase enzyme of<br><i>Bacillus circulans</i> ATCC 31382. FEBS Open Bio, 2014, 4, 1015-1020.                                                                               | 1.0 | 21        |
| 84 | Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide<br>donor samples. Glycobiology, 2014, 24, 728-739.                                                                                                        | 1.3 | 39        |
| 85 | Flexibility of truncated and fullâ€length glucansucrase <scp>GTF</scp> 180 enzymes from<br><i>LactobacillusÂreuteri</i> 180. FEBS Journal, 2014, 281, 2159-2171.                                                                                                | 2.2 | 21        |
| 86 | Isomalto/Malto-Polysaccharide, A Novel Soluble Dietary Fiber Made Via Enzymatic Conversion of<br>Starch. Journal of Agricultural and Food Chemistry, 2014, 62, 12034-12044.                                                                                     | 2.4 | 73        |
| 87 | 1 H NMR analysis of the lactose/β-galactosidase-derived galacto-oligosaccharide components of<br>Vivinal® GOS up to DP5. Carbohydrate Research, 2014, 400, 59-73.                                                                                               | 1.1 | 54        |
| 88 | Development of a 1 H NMR structural-reporter-group concept for the analysis of prebiotic<br>galacto-oligosaccharides of the [l²- d -Gal p -(1→ x )] n - d -Glc p type. Carbohydrate Research, 2014, 400,<br>54-58.                                              | 1.1 | 27        |
| 89 | Habitat-specific type I polyketide synthases in soils and street sediments. Journal of Industrial<br>Microbiology and Biotechnology, 2014, 41, 75-85.                                                                                                           | 1.4 | 21        |
| 90 | Galactosyl-Lactose Sialylation Using Trypanosoma cruzi trans-Sialidase as the Biocatalyst and Bovine<br>κ-Casein-Derived Glycomacropeptide as the Donor Substrate. Applied and Environmental Microbiology,<br>2014, 80, 5984-5991.                              | 1.4 | 20        |

LUBBERT DIJKHUIZEN

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | 3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid<br>degradation. Antonie Van Leeuwenhoek, 2014, 106, 157-172.                                                                             | 0.7 | 49        |
| 92  | Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger.<br>Microbiology (United Kingdom), 2013, 159, 1853-1867.                                                                                    | 0.7 | 17        |
| 93  | 4,6-α-Clucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology, 2013, 97, 181-193.                                                       | 1.7 | 52        |
| 94  | Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus. Carbohydrate Polymers, 2013, 91, 314-321.                                                                                      | 5.1 | 71        |
| 95  | Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology, 2013, 23, 1084-1096.                                                             | 1.3 | 33        |
| 96  | Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163, 250-272.                                            | 1.9 | 250       |
| 97  | Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. Journal of Structural Biology, 2013, 184, 301-309.                                                                                                   | 1.3 | 24        |
| 98  | Raw starch-degrading α-amylase from <i>Bacillus aquimaris</i> MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Journal of Applied Microbiology, 2013, 114, 108-120. | 1.4 | 56        |
| 99  | An Unconventional Glycosyl Transfer Reaction: Glucansucrase GTFA Functions as an Allosyltransferase Enzyme. ChemBioChem, 2013, 14, 2423-2426.                                                                                                 | 1.3 | 9         |
| 100 | Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel<br>GTFB 4,6-α-glucanotransferase enzyme from Lactobacillus reuteri 121. Glycobiology, 2012, 22, 517-528.                                     | 1.3 | 60        |
| 101 | Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that<br>releases monomers during substrate hydrolysis. Microbiology (United Kingdom), 2012, 158, 2168-2179.                                 | 0.7 | 23        |
| 102 | Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues.<br>Biocatalysis and Biotransformation, 2012, 30, 366-376.                                                                                  | 1.1 | 53        |
| 103 | The role of conserved inulosucrase residues in the reaction and product specificity of <i>Lactobacillusâ€freuteri</i> inulosucrase. FEBS Journal, 2012, 279, 3612-3621.                                                                       | 2.2 | 23        |
| 104 | Structure and Catalytic Mechanism of 3-Ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii<br>RHA1 Genome. Journal of Biological Chemistry, 2012, 287, 30975-30983.                                                                     | 1.6 | 25        |
| 105 | Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain<br>degradation in Rhodococcus rhodochrous DSM 43269. Microbiology (United Kingdom), 2012, 158,<br>3054-3062.                                  | 0.7 | 23        |
| 106 | <i>N</i> - and <i>O</i> -Glycosylation of a Commercial Bovine Whey Protein Product. Journal of<br>Agricultural and Food Chemistry, 2012, 60, 12553-12564.                                                                                     | 2.4 | 21        |
| 107 | Use of Wisteria floribunda agglutinin affinity chromatography in the structural analysis of the<br>bovine lactoferrin N-linked glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820,<br>1444-1455.                     | 1.1 | 36        |
| 108 | Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts.<br>Chemistry - A European Journal, 2012, 18, 10786-10801.                                                                                      | 1.7 | 183       |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from <i>Lactobacillus reuteri</i> 121. Acta<br>Crystallographica Section F: Structural Biology Communications, 2012, 68, 1448-1454.                                                                                   | 0.7 | 47        |
| 110 | Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance. Food Biophysics, 2012, 7, 220-226.                                                                                                             | 1.4 | 15        |
| 111 | Structural Features in the KshA Terminal Oxygenase Protein That Determine Substrate Preference of<br>3-Ketosteroid 9Â-Hydroxylase Enzymes. Journal of Bacteriology, 2012, 194, 115-121.                                                                                        | 1.0 | 30        |
| 112 | SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiology Letters, 2012, 329, 154-159.                                                                                                                          | 0.7 | 13        |
| 113 | Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Applied<br>Microbiology and Biotechnology, 2012, 93, 645-654.                                                                                                                             | 1.7 | 36        |
| 114 | FadD19 of Rhodococcus rhodochrous DSM43269, a Steroid-Coenzyme A Ligase Essential for<br>Degradation of C-24 Branched Sterol Side Chains. Applied and Environmental Microbiology, 2011, 77,<br>4455-4464.                                                                      | 1.4 | 62        |
| 115 | Multiplicity of 3-Ketosteroid-9α-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for<br>Specific Degradation of Different Classes of Steroids. Journal of Bacteriology, 2011, 193, 3931-3940.                                                                          | 1.0 | 76        |
| 116 | 4,6-α-Clucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary<br>Link between Glycoside Hydrolase Enzyme Families 13 and 70. Applied and Environmental Microbiology,<br>2011, 77, 8154-8163.                                            | 1.4 | 81        |
| 117 | Crystal Structure of Inulosucrase from Lactobacillus: Insights into the Substrate Specificity and<br>Product Specificity of GH68 Fructansucrases. Journal of Molecular Biology, 2011, 412, 80-93.                                                                              | 2.0 | 63        |
| 118 | Land Use Intensity Controls Actinobacterial Community Structure. Microbial Ecology, 2011, 61, 286-302.                                                                                                                                                                         | 1.4 | 52        |
| 119 | Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid<br>Δ <sup>4</sup> -(5α)-dehydrogenase from <i>Rhodococcus jostii</i> RHA1. Acta Crystallographica Section<br>F: Structural Biology Communications, 2011, 67, 1269-1273. | 0.7 | 4         |
| 120 | Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme. Journal of Biological Chemistry, 2011, 286, 3520-3530.                                                                                                                                                    | 1.6 | 88        |
| 121 | The Steroid Catabolic Pathway of the Intracellular Pathogen Rhodococcus equi Is Important for Pathogenesis and a Target for Vaccine Development. PLoS Pathogens, 2011, 7, e1002181.                                                                                            | 2.1 | 73        |
| 122 | Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications.<br>Applied Microbiology and Biotechnology, 2010, 85, 823-835.                                                                                                                | 1.7 | 157       |
| 123 | The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.                                                                                                                                                                       | 1.2 | 171       |
| 124 | Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product<br>specificity of GH70 enzymes. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 21406-21411.                                  | 3.3 | 140       |
| 125 | Metabolomic Characterization of the Salt Stress Response in <i>Streptomyces coelicolor</i> . Applied and Environmental Microbiology, 2010, 76, 2574-2581.                                                                                                                      | 1.4 | 84        |
| 126 | Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel<br>fructansucrase enzymes and their fructan products. Microbiology (United Kingdom), 2010, 156,<br>1264-1274.                                                           | 0.7 | 93        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | <i>Rhodococcus rhodochrous</i> DSM 43269 3-Ketosteroid 9α-Hydroxylase, a Two-Component<br>Iron-Sulfur-Containing Monooxygenase with Subtle Steroid Substrate Specificity. Applied and<br>Environmental Microbiology, 2009, 75, 5300-5307. | 1.4 | 77        |
| 128 | The Unique Branching Patterns of <i>Deinococcus</i> Glycogen Branching Enzymes Are Determined by Their N-Terminal Domains. Applied and Environmental Microbiology, 2009, 75, 1355-1362.                                                   | 1.4 | 78        |
| 129 | Directed evolution of enzymes: Library screening strategies. IUBMB Life, 2009, 61, 222-228.                                                                                                                                               | 1.5 | 99        |
| 130 | The evolution of cyclodextrin glucanotransferase product specificity. Applied Microbiology and Biotechnology, 2009, 84, 119-133.                                                                                                          | 1.7 | 64        |
| 131 | NepA is a structural cell wall protein involved in maintenance of spore dormancy in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2009, 71, 1591-1603.                                                                         | 1.2 | 42        |
| 132 | Attachment of <i>Streptomyces coelicolor</i> is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Molecular Microbiology, 2009, 73, 1128-1140.                                                          | 1.2 | 107       |
| 133 | Cytochrome P450 125 (CYP125) catalyses C26â€hydroxylation to initiate sterol sideâ€chain degradation in<br><i>Rhodococcus jostii</i> RHA1. Molecular Microbiology, 2009, 74, 1031-1043.                                                   | 1.2 | 114       |
| 134 | Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different <i>Weissella confusa</i> strains from soya. FEMS Microbiology Letters, 2009, 300, 131-138.                               | 0.7 | 50        |
| 135 | Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Journal of Biotechnology, 2009, 140, 184-193.                                                                                                      | 1.9 | 56        |
| 136 | Structural Characterization of Bioengineered α-d-Glucans Produced by Mutant Glucansucrase GTF180<br>Enzymes of Lactobacillus reuteri Strain 180. Biomacromolecules, 2009, 10, 580-588.                                                    | 2.6 | 50        |
| 137 | Martini Coarse-Grained Force Field: Extension to Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 3195-3210.                                                                                                           | 2.3 | 363       |
| 138 | Actinomycetologists: a vibrant and strong scientific community. Papers from the 14th International Symposium on the Biology of Actinomycetes. Antonie Van Leeuwenhoek, 2008, 94, 1-2.                                                     | 0.7 | 1         |
| 139 | Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek, 2008, 94, 127-143.                                                                                                                                            | 0.7 | 53        |
| 140 | Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Molecular Genetics and Genomics, 2008, 279, 545-561.                                              | 1.0 | 100       |
| 141 | Synthesis of Branched Polyglucans by the Tandem Action of Potato Phosphorylase and<br><i>Deinococcus geothermalis</i> Glycogen Branching Enzyme. Macromolecular Rapid<br>Communications, 2008, 29, 1293-1297.                             | 2.0 | 59        |
| 142 | Structural analysis of the α-d-glucan (EPS180) produced by the Lactobacillus reuteri strain 180<br>glucansucrase GTF180 enzyme. Carbohydrate Research, 2008, 343, 1237-1250.                                                              | 1.1 | 86        |
| 143 | Structural analysis of the α-d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohydrate Research, 2008, 343, 1251-1265.                                                                 | 1.1 | 61        |
| 144 | Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS Journal, 2008, 275, 6002-6010.                                                               | 2.2 | 15        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Positioning functional foods in an ecological approach to the prevention of overweight and obesity.<br>Obesity Reviews, 2008, 9, 464-473.                                                                                                                            | 3.1 | 7         |
| 146 | Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid, 2008, 59, 202-216.                                                                                                                              | 0.4 | 13        |
| 147 | Exo-inulinase of <i>Aspergillus niger</i> N402: A hydrolytic enzyme with significant transfructosylating activity. Biocatalysis and Biotransformation, 2008, 26, 49-58.                                                                                              | 1.1 | 24        |
| 148 | Biochemical and crystallographic characterization of a glucansucrase fromLactobacillus reuteri180.<br>Biocatalysis and Biotransformation, 2008, 26, 12-17.                                                                                                           | 1.1 | 31        |
| 149 | Structural Analysis of Bioengineered α-d-Glucan Produced by a Triple Mutant of the Glucansucrase<br>GTF180 Enzyme from Lactobacillus reuteri Strain 180: Generation of (α1→4) Linkages in a Native<br>(1→3)(1→6)-α-d-Glucan. Biomacromolecules, 2008, 9, 2251-2258.  | 2.6 | 31        |
| 150 | Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity: Toward<br>Tailor-Made Polymer and Oligosaccharide Productsâ€. Biochemistry, 2008, 47, 6678-6684.                                                                                 | 1.2 | 58        |
| 151 | The Probiotic <i>Lactobacillus johnsonii</i> NCC 533 Produces High-Molecular-Mass Inulin from<br>Sucrose by Using an Inulosucrase Enzyme. Applied and Environmental Microbiology, 2008, 74, 3426-3433.                                                               | 1.4 | 77        |
| 152 | The Actinobacterial mce4 Locus Encodes a Steroid Transporter. Journal of Biological Chemistry, 2008, 283, 35368-35374.                                                                                                                                               | 1.6 | 173       |
| 153 | Antibiotic Overproduction in Streptomyces coelicolor A3(2) Mediated by Phosphofructokinase Deletion*. Journal of Biological Chemistry, 2008, 283, 25186-25199.                                                                                                       | 1.6 | 131       |
| 154 | Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochemical Journal, 2008, 413, 517-525.                                                                                                 | 1.7 | 47        |
| 155 | Characterization of a Second Rhodococcus erythropolis SQ1 3-Ketosteroid 9α-Hydroxylase Activity<br>Comprising a Terminal Oxygenase Homologue, KshA2, Active with Oxygenase-Reductase Component<br>KshB. Applied and Environmental Microbiology, 2008, 74, 7197-7203. | 1.4 | 50        |
| 156 | A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi<br>using 5-fluorocytosine conditional lethality. Nucleic Acids Research, 2008, 36, e151-e151.                                                                      | 6.5 | 57        |
| 157 | 3-Keto-5α-steroid Δ1-dehydrogenase from <i>Rhodococcus erythropolis</i> SQ1 and its orthologue in<br><i>Mycobacterium tuberculosis</i> H37Rv are highly specific enzymes that function in cholesterol<br>catabolism. Biochemical Journal, 2008, 410, 339-346.        | 1.7 | 94        |
| 158 | Evolution toward Small Molecule Inhibitor Resistance Affects Native Enzyme Function and Stability,<br>Generating Acarbose-insensitive Cyclodextrin Glucanotransferase Variants. Journal of Biological<br>Chemistry, 2008, 283, 10727-10734.                          | 1.6 | 10        |
| 159 | Fructansucrase enzymes and sucrose analogues: A new approach for the synthesis of unique fructo-oligosaccharides. Biocatalysis and Biotransformation, 2008, 26, 32-41.                                                                                               | 1.1 | 18        |
| 160 | Molecular and Biochemical Characterization of a Novel Intracellular Invertase from Aspergillus niger with Transfructosylating Activity. Eukaryotic Cell, 2007, 6, 674-681.                                                                                           | 3.4 | 52        |
| 161 | Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase<br>enzymes. Microbiology (United Kingdom), 2007, 153, 4003-4015.                                                                                                  | 0.7 | 48        |
| 162 | A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into<br>Mycobacterium tuberculosis survival in macrophages. Proceedings of the National Academy of<br>Sciences of the United States of America, 2007, 104, 1947-1952.         | 3.3 | 480       |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Two Novel, Putatively Cell Wall-Associated and Glycosylphosphatidylinositol-Anchored<br>α-Glucanotransferase Enzymes of Aspergillus niger. Eukaryotic Cell, 2007, 6, 1178-1188.                                                                               | 3.4 | 33        |
| 164 | Three-way Stabilization of the Covalent Intermediate in Amylomaltase, an α-Amylase-like<br>Transglycosylase. Journal of Biological Chemistry, 2007, 282, 17242-17249.                                                                                         | 1.6 | 63        |
| 165 | Conversion of a Cyclodextrin Glucanotransferase into an α-Amylase:  Assessment of Directed Evolution<br>Strategies. Biochemistry, 2007, 46, 11216-11222.                                                                                                      | 1.2 | 51        |
| 166 | Identification of Acceptor Substrate Binding Subsites +2 and +3 in the Amylomaltase from Thermus thermophilus HB8. Biochemistry, 2007, 46, 5261-5269.                                                                                                         | 1.2 | 46        |
| 167 | Highly Efficient Chemoenzymatic Synthesis of Novel Branched Thiooligosaccharides by Substrate Direction with Glucansucrases. ChemBioChem, 2007, 8, 273-276.                                                                                                   | 1.3 | 28        |
| 168 | Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase<br>family 43 β-xylosidase fromGeobacillus thermoleovoransIT-08. Acta Crystallographica Section F:<br>Structural Biology Communications, 2007, 63, 932-935. | 0.7 | 5         |
| 169 | Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature<br>Biotechnology, 2007, 25, 221-231.                                                                                                                        | 9.4 | 1,047     |
| 170 | Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiology Ecology, 2007, 61, 285-294.                                                                                | 1.3 | 9         |
| 171 | Export, purification, and activities of affinity tagged Lactobacillus reuteri levansucrase produced by<br>Bacillus megaterium. Applied Microbiology and Biotechnology, 2007, 74, 1062-1073.                                                                   | 1.7 | 33        |
| 172 | A Bacillus megaterium Plasmid System for the Production, Export, and One-Step Purification of<br>Affinity-Tagged Heterologous Levansucrase from Growth Medium. Applied and Environmental<br>Microbiology, 2006, 72, 1677-1679.                                | 1.4 | 50        |
| 173 | Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid<br>Bacteria. Microbiology and Molecular Biology Reviews, 2006, 70, 157-176.                                                                                     | 2.9 | 366       |
| 174 | Regulation of Streptomyces development: reach for the sky!. Trends in Microbiology, 2006, 14, 313-319.                                                                                                                                                        | 3.5 | 133       |
| 175 | Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from<br>Lactobacillus reuteri 121. FEBS Journal, 2006, 273, 3735-3742.                                                                                       | 2.2 | 29        |
| 176 | Single amino acid residue changes in subsite â^ 1 of inulosucrase from Lactobacillus reuteri 121<br>strongly influence the size of products synthesized. FEBS Journal, 2006, 273, 4104-4113.                                                                  | 2.2 | 42        |
| 177 | Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae. World<br>Journal of Microbiology and Biotechnology, 2006, 22, 1347-1356.                                                                                                  | 1.7 | 14        |
| 178 | Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae.<br>Applied Microbiology and Biotechnology, 2006, 70, 237-246.                                                                                             | 1.7 | 35        |
| 179 | RepAM of the Amycolatopsis methanolica integrative element pMEA300 belongs to a novel class of replication initiator proteins. Microbiology (United Kingdom), 2006, 152, 2943-2950.                                                                           | 0.7 | 7         |
| 180 | The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology (United Kingdom), 2006, 152, 1187-1196.                                                              | 0.7 | 123       |

| #   | Article                                                                                                                                                                                                                | IF        | CITATIONS     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 181 | Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of<br>Aspergillus niger. Microbiology (United Kingdom), 2006, 152, 3061-3073.                                                  | 0.7       | 63            |
| 182 | Amyloids â€" a functional coat for microorganisms. Nature Reviews Microbiology, 2005, 3, 333-341.                                                                                                                      | 13.6      | 264           |
| 183 | Amylomaltase of Pyrobaculum aerophilum IM2 Produces Thermoreversible Starch Gels. Applied and Environmental Microbiology, 2005, 71, 5098-5106.                                                                         | 1.4       | 84            |
| 184 | Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730. Applied and Environmental Microbiology, 2005, 71, 3942-3950.                                                                 | 1.4       | 82            |
| 185 | Rational Transformation of Lactobacillus reuteri 121 Reuteransucrase into a Dextransucrase.<br>Biochemistry, 2005, 44, 9206-9216.                                                                                      | 1.2       | 75            |
| 186 | Mutational analysis of the role of calcium ions in theLactobacillus reuteristrain 121<br>fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Letters, 2005, 579, 1124-1128.                             | 1.3       | 39            |
| 187 | Gas vesicles in actinomycetes: old buoys in novel habitats?. Trends in Microbiology, 2005, 13, 350-354.                                                                                                                | 3.5       | 60            |
| 188 | Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri.<br>Microbiology (United Kingdom), 2004, 150, 621-630.                                                                         | 0.7       | 99            |
| 189 | Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase.<br>Microbiology (United Kingdom), 2004, 150, 2099-2112.                                                                       | 0.7       | 134           |
| 190 | Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology (United) Tj ETQq0 0                                                                                                         | 0 rgBT /O | verlock 10 Tf |
| 191 | The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Molecular Microbiology, 2004, 53, 433-443.                                                            | 1.2       | 132           |
| 192 | Promotion of fibroblast activity by coating with hydrophobins in the β-sheet end state. Biomaterials, 2004, 25, 2731-2739.                                                                                             | 5.7       | 68            |
| 193 | Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes,<br>enzymes and glucan products from six different strains. Microbiology (United Kingdom), 2004, 150,<br>3681-3690. | 0.7       | 181           |
| 194 | Single Amino Acid Mutations Interchange the Reaction Specificities of Cyclodextrin<br>Glycosyltransferase and the Acarbose-Modifying Enzyme Acarviosyl Transferaseâ€. Biochemistry, 2004,<br>43, 13204-13213.          | 1.2       | 25            |
| 195 | Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Current Opinion in Microbiology, 2004, 7, 255-261.                                                               | 2.3       | 228           |
| 196 | Improved method for the isolation of RNA from (standing liquid cultures of) Streptomycetes. Journal of Microbiological Methods, 2004, 58, 139-142.                                                                     | 0.7       | 6             |
| 197 | Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases ofLactobacillus reuteri121. FEBS Letters, 2004, 560, 131-133.                                                             | 1.3       | 47            |
| 198 | Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochemical Society Transactions, 2004, 32, 279-282.                                                                                        | 1.6       | 70            |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | High-throughput screening for gene libraries expressing carbohydrate hydrolase activity.<br>Biotechnology Letters, 2003, 25, 1643-1645.                                                                                                                     | 1.1 | 5         |
| 200 | Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins: Structure, Function and Bioinformatics, 2003, 54, 128-134.                                                                  | 1.5 | 38        |
| 201 | Growth of the salt-tolerant yeastZygosaccharomyces rouxiiin microtiter plates: effects of NaCl, pH<br>and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS<br>Yeast Research, 2003, 3, 313-318.                     | 1.1 | 13        |
| 202 | Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.<br>Journal of Biotechnology, 2003, 103, 203-212.                                                                                                          | 1.9 | 16        |
| 203 | Conversion of Cyclodextrin Glycosyltransferase into a Starch Hydrolase by Directed Evolution:  The<br>Role of Alanine 230 in Acceptor Subsite +1,. Biochemistry, 2003, 42, 7518-7526.                                                                       | 1.2 | 57        |
| 204 | Kinetic properties of an inulosucrase fromLactobacillus reuteri121. FEBS Letters, 2003, 534, 207-210.                                                                                                                                                       | 1.3 | 58        |
| 205 | The fully conserved Asp residue in conserved sequence region I of the α-amylase family is crucial for the catalytic site architecture and activity. FEBS Letters, 2003, 541, 47-51.                                                                         | 1.3 | 25        |
| 206 | Growth of the salt-tolerant yeast in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS Yeast Research, 2003, 3, 313-318.                                                  | 1.1 | 24        |
| 207 | A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development, 2003, 17, 1714-1726.                                                               | 2.7 | 301       |
| 208 | Differentiation and Anaerobiosis in Standing Liquid Cultures of Streptomyces coelicolor. Journal of<br>Bacteriology, 2003, 185, 1455-1458.                                                                                                                  | 1.0 | 40        |
| 209 | (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiology (United Kingdom), 2003, 149, 3321-3330.                                                          | 0.7 | 24        |
| 210 | Analysis of DNA Binding and Transcriptional Activation by the LysR-Type Transcriptional Regulator<br>CbbR of Xanthobacter flavus. Journal of Bacteriology, 2003, 185, 1245-1252.                                                                            | 1.0 | 45        |
| 211 | The Fifth Carbohydrate Bioengineering Meeting was held in Groningen, The Netherlands, April 6–9, 2003. Biocatalysis and Biotransformation, 2003, 21, 145-145.                                                                                               | 1.1 | 0         |
| 212 | Engineering of Hydrolysis Reaction Specificity in the Transglycosylase Cyclodextrin<br>Glycosyltransferase. Biocatalysis and Biotransformation, 2003, 21, 261-270.                                                                                          | 1.1 | 9         |
| 213 | Efficient Screening Methods for Glucosyltransferase Genes inLactobacillusStrains. Biocatalysis and<br>Biotransformation, 2003, 21, 181-187.                                                                                                                 | 1.1 | 33        |
| 214 | Properties of the Glucan Branching Enzyme of the Hyperthermophilic Bacterium <i>Aquifex aeolicus</i> . Biocatalysis and Biotransformation, 2003, 21, 199-207.                                                                                               | 1.1 | 37        |
| 215 | Properties of the Glucan Branching Enzyme of the Hyperthermophilic Bacterium Aquifex aeolicus.<br>Biocatalysis and Biotransformation, 2003, 21, 199-207.                                                                                                    | 1.1 | 7         |
| 216 | Molecular Characterization of a Novel Glucosyltransferase from Lactobacillus reuteri Strain 121<br>Synthesizing a Unique, Highly Branched Glucan with α-(1→4) and α-(1→6) Glucosidic Bonds. Applied and<br>Environmental Microbiology, 2002, 68, 4283-4291. | 1.4 | 110       |

| #   | Article                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Identification of a Magnesium-dependent NAD(P)(H)-binding Domain in the Nicotinoprotein Methanol<br>Dehydrogenase from Bacillus methanolicus. Journal of Biological Chemistry, 2002, 277, 46966-46973.                                                                                                 | 1.6 | 35        |
| 218 | The Remote Substrate Binding Subsite â´`6 in Cyclodextrin-glycosyltransferase Controls the<br>Transferase Activity of the Enzyme via an Induced-fit Mechanism. Journal of Biological Chemistry,<br>2002, 277, 1113-1119.                                                                               | 1.6 | 43        |
| 219 | Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1<br>encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme b bThe GenBank accession number for the<br>sequence reported in this paper is AY078169. Microbiology (United Kingdom), 2002, 148, 3285-3292. | 0.7 | 92        |
| 220 | Molecular, Biochemical, and Functional Characterization of a Nudix Hydrolase Protein That<br>Stimulates the Activity of a Nicotinoprotein Alcohol Dehydrogenase. Journal of Biological Chemistry,<br>2002, 277, 34785-34792.                                                                           | 1.6 | 19        |
| 221 | Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 2002, 94, 137-155.                                                                                                                                                                         | 1.9 | 1,075     |
| 222 | Characterization of a Novel Fructosyltransferase from Lactobacillus reuteri That Synthesizes<br>High-Molecular-Weight Inulin and Inulin Oligosaccharides. Applied and Environmental Microbiology,<br>2002, 68, 4390-4398.                                                                              | 1.4 | 154       |
| 223 | Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch<br>hydrolase. FEBS Letters, 2002, 514, 189-192.                                                                                                                                                            | 1.3 | 47        |
| 224 | Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved<br>in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Molecular<br>Microbiology, 2002, 44, 1483-1492.                                                               | 1.2 | 96        |
| 225 | Molecular and functional characterization of kshA and kshB, encoding two components of<br>3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1.<br>Molecular Microbiology, 2002, 45, 1007-1018.                                                          | 1.2 | 115       |
| 226 | Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. FEBS Journal, 2002, 270, 155-162.                                                                                                                                                                                           | 0.2 | 38        |
| 227 | Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme and Microbial Technology, 2002, 30, 295-304.                                                                                                        | 1.6 | 44        |
| 228 | Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid. Biomaterials, 2002, 23, 4847-4854.                                                                                                                                                                  | 5.7 | 83        |
| 229 | Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in<br>Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiology Letters,<br>2001, 205, 197-202.                                                                                     | 0.7 | 125       |
| 230 | Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiology Letters, 2001, 205, 323-328.                                                                                                                          | 0.7 | 79        |
| 231 | Synthesis of Malto-Oligosaccharides Via the Acceptor Reaction Catalyzed by Cyclodextrin Clycosyltransferases. Biocatalysis and Biotransformation, 2001, 19, 21-35.                                                                                                                                     | 1.1 | 30        |
| 232 | Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase. Proteins: Structure, Function and Bioinformatics, 2001, 43, 327-335.                                                                                   | 1.5 | 34        |
| 233 | Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in<br>Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiology Letters,<br>2001, 205, 197-202.                                                                                     | 0.7 | 122       |
| 234 | Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiology Letters, 2001, 205, 323-328.                                                                                                                          | 0.7 | 71        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Different Physiological Roles of ATP- and PP i -Dependent Phosphofructokinase Isoenzymes in the<br>Methylotrophic Actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 2001, 183, 7231-7240.                                                    | 1.0 | 51        |
| 236 | Hydrophobic Amino Acid Residues in the Acceptor Binding Site Are Main Determinants for Reaction<br>Mechanism and Specificity of Cyclodextrin-glycosyltransferase. Journal of Biological Chemistry, 2001,<br>276, 44557-44562.                               | 1.6 | 93        |
| 237 | The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. FEBS Journal, 2000, 267, 658-665.                                                       | 0.2 | 148       |
| 238 | The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. FEBS Journal, 2000, 267, 3432-3441.                                                                               | 0.2 | 57        |
| 239 | Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 103-109.                                                                                                     | 1.8 | 21        |
| 240 | Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BBA - Proteins and Proteomics, 2000, 1543, 336-360.                                                                                                                       | 2.1 | 159       |
| 241 | Effects of the Calvin Cycle on Nicotinamide Adenine Dinucleotide Concentrations and Redox Balances ofXanthobacter flavus. Journal of Bacteriology, 2000, 182, 4637-4639.                                                                                    | 1.0 | 10        |
| 242 | Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid Δ 1 -Dehydrogenase Isoenzyme of<br>Rhodococcus erythropolis Strain SQ1. Applied and Environmental Microbiology, 2000, 66, 2029-2036.                                                          | 1.4 | 122       |
| 243 | Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase<br>α-cyclodextrin production 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 2000, 296, 1027-1038.                                             | 2.0 | 89        |
| 244 | Structures of Maltohexaose and Maltoheptaose Bound at the Donor Sites of Cyclodextrin<br>Glycosyltransferase Give Insight into the Mechanisms of Transglycosylation Activity and<br>Cyclodextrin Size Specificityâ€,â€j. Biochemistry, 2000, 39, 7772-7780. | 1.2 | 81        |
| 245 | The Cyclization Mechanism of Cyclodextrin Glycosyltransferase (CGTase) as Revealed by a<br>γ-Cyclodextrin-CGTase Complex at 1.8-à Resolution. Journal of Biological Chemistry, 1999, 274,<br>34868-34876.                                                   | 1.6 | 111       |
| 246 | X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural Biology, 1999, 6, 432-436.                                                                               | 9.7 | 348       |
| 247 | Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides<br>Synthesized by the <i>Lactobacillus reuteri</i> Wild-Type Strain and by Mutant Strains. Applied and<br>Environmental Microbiology, 1999, 65, 3008-3014.         | 1.4 | 143       |
| 248 | Mutational analysis of exopolysaccharide biosynthesis byLactobacillus sakei0-1. FEMS Microbiology<br>Letters, 1998, 169, 241-249.                                                                                                                           | 0.7 | 25        |
| 249 | Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in<br>the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. FEBS<br>Journal, 1998, 253, 598-605.                        | 0.2 | 39        |
| 250 | Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Applied Microbiology and Biotechnology, 1998, 50, 697-703.                                                                                           | 1.7 | 151       |
| 251 | Mutational analysis of exopolysaccharide biosynthesis byLactobacillus sakei 0-1. FEMS Microbiology<br>Letters, 1998, 169, 241-249.                                                                                                                          | 0.7 | 19        |
| 252 | Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin<br>Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Journal of Biological<br>Chemistry, 1998, 273, 5771-5779.                          | 1.6 | 100       |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | The LysR-Type Transcriptional Regulator CbbR Controlling Autotrophic CO <sub>2</sub> Fixation by<br><i>Xanthobacter flavus</i> Is an NADPH Sensor. Journal of Bacteriology, 1998, 180, 1411-1417.                                   | 1.0 | 57        |
| 254 | Tetrazolium-Dye-Linked Alcohol Dehydrogenase of the Methylotrophic Actinomycete Amycolatopsis<br>Methanolica is a Three-Component Complex. FEBS Journal, 1997, 247, 280-287.                                                        | 0.2 | 18        |
| 255 | Properties of an NAD(H)-Containing Methanol Dehydrogenase and its Activator Protein from Bacillus methanolicus. FEBS Journal, 1997, 244, 426-433.                                                                                   | 0.2 | 59        |
| 256 | Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of<br>the actinomycete Streptomyces coelicolor A3(2). Applied and Environmental Microbiology, 1997, 63,<br>956-961.              | 1.4 | 36        |
| 257 | Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp. in different physiological stages of growth. Aquatic Microbial Ecology, 1997, 12, 11-19.                                                                   | 0.9 | 27        |
| 258 | Structure of Cyclodextrin Glycosyltransferase Complexed with a Maltononaose Inhibitor at 2.6 Ã<br>Resolution. Implications for Product Specificityâ€,‡. Biochemistry, 1996, 35, 4241-4249.                                          | 1.2 | 149       |
| 259 | Isolation and analysis of mutants of the methylotrophic actinomycete Amycolatopsis methanolica<br>blocked in aromatic amino acid biosynthesis. FEMS Microbiology Letters, 1996, 136, 275-281.                                       | 0.7 | Ο         |
| 260 | Crystal Structure at 2.3 Ã Resolution and Revised Nucleotide Sequence of the Thermostable<br>Cyclodextrin Glycosyltransferase fromThermoanaerobacterium thermosulfurigenesEM1. Journal of<br>Molecular Biology, 1996, 256, 611-622. | 2.0 | 84        |
| 261 | Enzymic synthesis of cyclothiomaltins. Chemical Communications, 1996, , 2541.                                                                                                                                                       | 2.2 | 10        |
| 262 | Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate<br>aldolase of Xanthobacter flavus. Journal of Bacteriology, 1996, 178, 888-893.                                                 | 1.0 | 31        |
| 263 | Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent<br>phosphofructokinase. Journal of Bacteriology, 1996, 178, 149-155.                                                             | 1.0 | 39        |
| 264 | Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). Journal of Bacteriology, 1996, 178, 2238-2244.                                                                                                 | 1.0 | 211       |
| 265 | Isolation and analysis of mutants of the methylotrophic actinomyceteAmycolatopsis<br>methanolicablocked in aromatic amino acid biosynthesis. FEMS Microbiology Letters, 1996, 136, 275-281.                                         | 0.7 | 5         |
| 266 | Mutational analysis of primary alcohol metabolism in the methylotrophic actinomyceteAmycolatopsis<br>methanolica. FEMS Microbiology Letters, 1996, 144, 73-79.                                                                      | 0.7 | 8         |
| 267 | A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of<br>methanol and ethanol by Methylobacterium extorquens AM1. Microbiology (United Kingdom), 1996, 142,<br>675-684.                     | 0.7 | 27        |
| 268 | The Raw Starch Binding Domain of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251. Journal of Biological Chemistry, 1996, 271, 32777-32784.                                                                      | 1.6 | 172       |
| 269 | Intriguing Functionality of the Production and Conversion of DMSP in Phaeocystis SP. , 1996, , 305-315.                                                                                                                             |     | 18        |
| 270 | Metabolic Regulation in the Actinomycete Amycolatopsis Methanolica, a Facultative Methylotroph                                                                                                                                      |     | 1         |

<sup>70</sup> Employing the Rump Cycle for Formaldehyde Assimilation. , 1996, , 9-15.

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Mutational analysis of primary alcohol metabolism in the methylotrophic actinomycete<br>Amycolatopsis methanolica. FEMS Microbiology Letters, 1996, 144, 73-79.                                                                                       | 0.7 | 2         |
| 272 | Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Marine Ecology - Progress Series, 1996, 131, 307-313.                                                                                                                            | 0.9 | 103       |
| 273 | Turnover of dimethylsulfoniopropionate and dimethylsulfide in the marine environment:a mesocosm<br>experiment. Marine Ecology - Progress Series, 1996, 145, 223-232.                                                                                  | 0.9 | 26        |
| 274 | The marine sulfur-cycle: Importance of Phaeocystis SP. in DMS-production during a nearshore springbloom. Studies in Environmental Science, 1995, 65, 241-243.                                                                                         | 0.0 | 1         |
| 275 | Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins. Biochemical Journal, 1995, 308, 313-320.                                                        | 1.7 | 20        |
| 276 | Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Molecular Microbiology, 1995, 18, 21-31.                                                                                      | 1.2 | 20        |
| 277 | Transformation of the Methylotrophic ActinomyceteAmycolatopis methanolicawith Plasmid DNA:<br>Stimulatory Effect of a pMEA300-Encoded Gene. Plasmid, 1995, 34, 96-104.                                                                                | 0.4 | 26        |
| 278 | Fructosebisphosphatase isoenzymes of the chemoautotroph Xanthobacter flavus. Journal of<br>Bacteriology, 1995, 177, 5860-5864.                                                                                                                        | 1.0 | 11        |
| 279 | Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. Journal of Bacteriology, 1995, 177, 6666-6669.                                                             | 1.0 | 13        |
| 280 | Identification and functional analysis of the transfer region of plasmid pMEA300 of the<br>methylotrophic actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 1995, 177, 6499-6505.                                                      | 1.0 | 15        |
| 281 | Protein engineering of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Progress in Biotechnology, 1995, , 165-174.                                                                                                               | 0.2 | 1         |
| 282 | X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases. Biochemistry, 1995, 34, 2234-2240.                                                                             | 1.2 | 140       |
| 283 | Site-Directed Mutations in Tyrosine 195 of Cyclodextrin Glycosyltransferase from Bacillus circulans<br>Strain 251 Affect Activity and Product Specificity. Biochemistry, 1995, 34, 3368-3376.                                                         | 1.2 | 146       |
| 284 | Crystallographic Studies of the Interaction of Cyclodextrin Glycosyltransferase from Bacillus<br>circulans Strain 251 with Natural Substrates and Products. Journal of Biological Chemistry, 1995, 270,<br>29256-29264.                               | 1.6 | 131       |
| 285 | Chorismate mutase and 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the methylotrophic actinomycete Amycolatopsis methanolica. Applied and Environmental Microbiology, 1995, 61, 3796-3803.                                                 | 1.4 | 14        |
| 286 | Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium<br>thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase.<br>Applied and Environmental Microbiology, 1995, 61, 1257-1265. | 1.4 | 91        |
| 287 | Biosynthesis of l-Phenylalanine and l-Tyrosine in the Actinomycete Amycolatopsis methanolica. Applied and Environmental Microbiology, 1995, 61, 1298-1302.                                                                                            | 1.4 | 23        |
| 288 | DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp.<br>abundance. Marine Ecology - Progress Series, 1995, 123, 235-243.                                                                               | 0.9 | 72        |

| #   | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. Journal of Bacteriology, 1994, 176, 7087-7090.                                                                                                                                                      | 1.0 | 39        |
| 290 | Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable<br>α-amylase-producing strain. Applied Microbiology and Biotechnology, 1994, 41, 155-162.                                                                                                                                     | 1.7 | 53        |
| 291 | Nucleotide Sequence and X-ray Structure of Cyclodextrin Glycosyltransferase from Bacillus<br>circulans Strain 251 in a Maltose-dependent Crystal Form. Journal of Molecular Biology, 1994, 236,<br>590-600.                                                                                                        | 2.0 | 228       |
| 292 | Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 1994, 176, 6827-6835.                                                                                                                                                                           | 1.0 | 45        |
| 293 | Purification and Characterization of an <scp>l</scp> -Amino Amidase from <i>Mycobacterium<br/>neoaurum</i> ATCC 25795. Applied and Environmental Microbiology, 1994, 60, 153-159.                                                                                                                                  | 1.4 | 30        |
| 294 | Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable<br>?-amylase-producing strain. Applied Microbiology and Biotechnology, 1994, 41, 155-162.                                                                                                                                     | 1.7 | 5         |
| 295 | Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by a marine<br>Desulfobacterium strain. Archives of Microbiology, 1993, 160, 411-412.                                                                                                                                          | 1.0 | 24        |
| 296 | Metabolism of amino acid amides in Pseudomonas putida ATCC 12633. Applied Microbiology and Biotechnology, 1993, 40, 519.                                                                                                                                                                                           | 1.7 | 4         |
| 297 | Electron microscopic analysis and structural characterization of novel NADP(H)-containing<br>methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic<br>bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. Journal of Bacteriology, 1993, 175,<br>1814-1822. | 1.0 | 52        |
| 298 | CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. Journal of Bacteriology, 1993, 175, 6097-6104.                                                                                                                             | 1.0 | 57        |
| 299 | Isolation of Marine Dimethylsulfide-Oxidizing Bacteria. , 1993, , 37-41.                                                                                                                                                                                                                                           |     | 2         |
| 300 | Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol. Journal of General<br>Microbiology, 1993, 139, 1979-1985.                                                                                                                                                                          | 2.3 | 34        |
| 301 | Purification and Characterization of an <scp>l</scp> -Aminopeptidase from <i>Pseudomonas<br/>putida</i> ATCC 12633. Applied and Environmental Microbiology, 1993, 59, 4330-4334.                                                                                                                                   | 1.4 | 32        |
| 302 | Emendation of Xanthobacter flavus as a Motile Species. International Journal of Systematic<br>Bacteriology, 1992, 42, 309-311.                                                                                                                                                                                     | 2.8 | 11        |
| 303 | Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. Journal of General Microbiology, 1992, 138, 2449-2457.                                                                                                                                           | 2.3 | 51        |
| 304 | Bacillus methanolicus sp. nov., a New Species of Thermotolerant, Methanol-Utilizing,<br>Endospore-Forming Bacteria. International Journal of Systematic Bacteriology, 1992, 42, 439-445.                                                                                                                           | 2.8 | 93        |
| 305 | Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. Journal of Bacteriology, 1992, 174, 5346-5353.                                                                                                                                                             | 1.0 | 99        |
| 306 | Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains.<br>Archives of Microbiology, 1992, 157, 272-278.                                                                                                                                                                 | 1.0 | 24        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Purification and characterization of an NAD+-linked formaldehyde dehydrogenase from the<br>facultative RuMP cycle methylotrophArthrobacter P1. Antonie Van Leeuwenhoek, 1992, 62, 201-207.                                                                                       | 0.7 | 7         |
| 308 | Structural analysis of a stereochemical modification of flavin adenine dinucleotide in alcohol oxidase from methylotrophic yeasts. Tetrahedron, 1992, 48, 4147-4162.                                                                                                             | 1.0 | 16        |
| 309 | Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of<br>bacteria. FEMS Microbiology Letters, 1992, 99, 107-110.                                                                                                                     | 0.7 | 36        |
| 310 | The Physiology and Biochemistry of Aerobic Methanol-Utilizing Gram-Negative and Gram-Positive Bacteria. , 1992, , 149-181.                                                                                                                                                       |     | 34        |
| 311 | A novel dye-linked alcohol dehydrogenase activity present in some Gram-positive bacteria. FEMS<br>Microbiology Letters, 1991, 80, 57-64.                                                                                                                                         | 0.7 | 18        |
| 312 | Regulation of methanol oxidation and carbon dioxide fixation in Xanthobacter strain 25a grown in continuous culture. Archives of Microbiology, 1991, 155, 159-163.                                                                                                               | 1.0 | 13        |
| 313 | Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14.<br>Molecular Genetics and Genomics, 1991, 225, 320-330.                                                                                                                           | 2.4 | 81        |
| 314 | Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha.<br>Journal of General Microbiology, 1991, 137, 2381-2386.                                                                                                                      | 2.3 | 16        |
| 315 | A novel dye-linked alcohol dehydrogenase activity present in some Gram-positive bacteria. FEMS<br>Microbiology Letters, 1991, 80, 57-63.                                                                                                                                         | 0.7 | 4         |
| 316 | Regulation of Oxidation and Assimilation of One-Carbon Compounds in Methylotrophic Bacteria. ,<br>1991, 18, 127-148.                                                                                                                                                             |     | 5         |
| 317 | Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. Journal of Biological Chemistry, 1991, 266, 3949-3954.                                                                                 | 1.6 | 47        |
| 318 | Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. Journal of Biological Chemistry, 1991, 266, 3955-3960.                                                                                                    | 1.6 | 38        |
| 319 | Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase<br>from the thermotolerant Bacillus sp. C1. Journal of Biological Chemistry, 1991, 266, 3949-54.                                                                                | 1.6 | 38        |
| 320 | Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. Journal of Biological Chemistry, 1991, 266, 3955-60.                                                                                                      | 1.6 | 33        |
| 321 | [63] Transaldolase Isoenzymes from Arthrobacter P1. Methods in Enzymology, 1990, 188, 405-411.                                                                                                                                                                                   | 0.4 | 5         |
| 322 | Methanol metabolism in thermotolerant methylotrophicBacillusspecies. FEMS Microbiology Letters, 1990, 87, 215-220.                                                                                                                                                               | 0.7 | 6         |
| 323 | Metabolic regulation in the yeastHansenula polymorpha. Growth of dihydroxyacetone kinase/glycerol<br>kinase-negative mutants on mixtures of methanol and xylose in continuous cultures. Yeast, 1990, 6,<br>107-115.                                                              | 0.8 | 6         |
| 324 | Classical transketolase functions as the formaldehyde-assimilating enzyme during growth of a<br>dihydroxyacetone synthase-negative mutant of the methylotrophic yeastHansenula polymorpha on<br>mixtures of xylose and methanol in continuous cultures. Yeast, 1990, 6, 117-125. | 0.8 | 10        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Regulation of methanol metabolism in the facultative methylotroph Nocardia sp. 239 during growth<br>on mixed substrates in batch- and continuous cultures. Archives of Microbiology, 1990, 153, 337-343.                                            | 1.0 | 15        |
| 326 | Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Archives of Microbiology, 1990, 153, 360-367.                                                               | 1.0 | 36        |
| 327 | Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic<br>yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase. Applied<br>Microbiology and Biotechnology, 1990, 32, 693-698. | 1.7 | 5         |
| 328 | Biosynthesis of aromatic amino acids in Nocardia sp. 239: effects of amino acid analogues on growth and regulatory enzymes. Applied Microbiology and Biotechnology, 1990, 33, 183-189.                                                              | 1.7 | 5         |
| 329 | Amycolatopsis methanolica sp. nov., a Facultatively Methylotrophic Actinomycete. International<br>Journal of Systematic Bacteriology, 1990, 40, 194-204.                                                                                            | 2.8 | 77        |
| 330 | [60] 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. Methods in Enzymology, 1990, 188, 391-397.                                                                                                                       | 0.4 | 33        |
| 331 | Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from<br>Xanthobacter flavus H4-14. Journal of General Microbiology, 1990, 136, 2225-2230.                                                                 | 2.3 | 31        |
| 332 | [35] Methanol dehydrogenase from thermotolerant METHYLOTROPH Bacillus C1. Methods in Enzymology, 1990, 188, 223-226.                                                                                                                                | 0.4 | 6         |
| 333 | Maltodextrin-dependent crystallization of cyclomaltodextrin glucanotransferase from Bacillus<br>circulans. Journal of Molecular Biology, 1990, 214, 807-809.                                                                                        | 2.0 | 17        |
| 334 | Microbial and enzymatic processes for l-phenylalanine production. Advances in Biochemical Engineering/Biotechnology, 1990, , 1-27.                                                                                                                  | 0.6 | 18        |
| 335 | Methanol metabolism in thermotolerant methylotrophic Bacillus species. FEMS Microbiology Letters, 1990, 87, 215-219.                                                                                                                                | 0.7 | 4         |
| 336 | Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph<br>Nocardia sp. 239. Archives of Microbiology, 1989, 151, 319-325.                                                                                  | 1.0 | 18        |
| 337 | Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic<br>NAD-dependent methanol dehydrogenase as a key enzyme. Archives of Microbiology, 1989, 152, 280-288.                                            | 1.0 | 95        |
| 338 | Nitrogen metabolism in the facultative methylotroph Arthrobacter P1 grown with various amines or ammonia as nitrogen sources. Antonie Van Leeuwenhoek, 1989, 56, 221-232.                                                                           | 0.7 | 8         |
| 339 | Purification, characterization and regulation of a monomeric l-phenylalanine dehydrogenase from the facultative methylotroph Nocardia sp. 239. Archives of Microbiology, 1989, 153, 12-18.                                                          | 1.0 | 28        |
| 340 | Regulation of gluconate and ketogluconate production in Gluconobacter oxydans ATCC 621-H.<br>Archives of Microbiology, 1988, 149, 534-539.                                                                                                          | 1.0 | 30        |
| 341 | Phenylalanine and tyrosine metabolism in the facultative methylotroph Nocardia sp. 239. Archives of Microbiology, 1988, 149, 459-465.                                                                                                               | 1.0 | 39        |
| 342 | Isolation and initial characterization of thermotolerant methylotrophicBacillusstrains. FEMS<br>Microbiology Letters, 1988, 52, 209-214.                                                                                                            | 0.7 | 62        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Regulation of Autotrophic Metabolism in Pseudomonas oxalaticus OX1 Wild-type and an<br>Isocitrate-lyase-deficient Mutant. Microbiology (United Kingdom), 1988, 134, 3231-3237.                                        | 0.7 | 6         |
| 344 | Glycerol metabolism in the methylotrophic yeast Hansenula polymorpha: phosphorylation as the initial step. Archives of Microbiology, 1987, 148, 314-320.                                                              | 1.0 | 24        |
| 345 | Regulation of methanol metabolism in the yeast Hansenula polymorpha. Archives of Microbiology, 1987, 147, 375-382.                                                                                                    | 1.0 | 31        |
| 346 | Isolation and characterization of mutants of the facultative methylotroph Arthrobacter P1 blocked in one-carbon metabolism. Archives of Microbiology, 1987, 146, 346-352.                                             | 1.0 | 15        |
| 347 | Thermostability of l-phenylalanine aminotransferase from thermophilic bacteria. Applied<br>Microbiology and Biotechnology, 1987, 27, 292.                                                                             | 1.7 | 8         |
| 348 | Metabolic Regulation in Facultative Methylotrophs. , 1987, , 95-104.                                                                                                                                                  |     | 4         |
| 349 | Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Archives of Microbiology, 1986, 144, 272-278.                                                                                               | 1.0 | 13        |
| 350 | Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Archives of Microbiology, 1986, 144, 279-285.                                                                                               | 1.0 | 11        |
| 351 | Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha. Archives of<br>Microbiology, 1986, 145, 62-70.                                                                                    | 1.0 | 21        |
| 352 | Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in<br>the ribulose monophosphate cycle methylotroph Arthrobacter P1. Archives of Microbiology, 1986, 144,<br>116-123. | 1.0 | 13        |
| 353 | Regulation of methylotrophic and heterotrophic metabolism in Arthrobacter P1. Growth on mixtures of methylamine and acetate in batch and continuous cultures. Archives of Microbiology, 1985, 142, 113-120.           | 1.0 | 18        |
| 354 | Methanol as a fermentation substrate for the production of phenylalanine, tyrosine and tryptophan<br>by the facultative methylotroph Nocardia sp. 239. Antonie Van Leeuwenhoek, 1985, 51, 566-567.                    | 0.7 | 1         |
| 355 | Methanol, a potential feedstock for biotechnological processes. Trends in Biotechnology, 1985, 3, 262-267.                                                                                                            | 4.9 | 49        |
| 356 | Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Applied and Environmental Microbiology, 1985, 49, 673-677.                                                                         | 1.4 | 336       |
| 357 | Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Antonie Van Leeuwenhoek, 1984, 50, 473-487.                                                                  | 0.7 | 48        |
| 358 | Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the<br>R-plasmid-mediated introduction of the Escherichia coli pdh genes. Archives of Microbiology, 1984,<br>139, 311-318.        | 1.0 | 21        |
| 359 | Metabolic regulation in the facultative methylotroph Arthrobacter P1. Growth on primary amines as carbon and energy sources. Archives of Microbiology, 1984, 139-139, 188-195.                                        | 1.0 | 15        |
| 360 | Diffusion of oxygen in alginate gels related to the kinetics of methanol oxidation by immobilized<br>Hansenula polymorpha cells. European Journal of Applied Microbiology and Biotechnology, 1983, 18,<br>189-196.    | 1.3 | 77        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Physiological Responses to Nutrient Limitation. Annual Review of Microbiology, 1983, 37, 1-23.                                                                                                     | 2.9 | 363       |
| 362 | Strategies of mixed substrate utilization in microorganisms. Philosophical Transactions of the Royal<br>Society of London Series B, Biological Sciences, 1982, 297, 459-480.                       | 2.4 | 260       |
| 363 | Uptake of methylamine via an inducible, energy-dependent transport system in the facultative methylotroph Arthrobacter P1. Archives of Microbiology, 1982, 133, 261-266.                           | 1.0 | 28        |
| 364 | Enzymatic evidence for the operation of the FBP aldolase cleavage and TK/TA re-arrangement variant of the RuMP cycle inArothbacterP1. FEMS Microbiology Letters, 1982, 14, 257-261.                | 0.7 | 16        |
| 365 | The rapid isolation of mutants of some Gram-positive bacteria. FEMS Microbiology Letters, 1981, 12, 51-53.                                                                                         | 0.7 | 5         |
| 366 | Metabolic regulation in Pseudomonas oxalaticus OX1. Diauxic growth on mixtures of oxalate and formate or acetate. Archives of Microbiology, 1980, 124-124, 261-268.                                | 1.0 | 28        |
| 367 | Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture. Archives of Microbiology, 1979, 123, 47-53. | 1.0 | 62        |
| 368 | Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture. Archives of Microbiology, 1979, 123, 55-63. | 1.0 | 19        |
| 369 | A pyridine nucleotide-independent membrane-bound formate dehydrogenase inPseudomonas<br>oxalaticusOX1. FEMS Microbiology Letters, 1979, 6, 53-56.                                                  | 0.7 | 16        |
| 370 | Metabolic regulation in Pseudomonas oxalaticus OX1. Archives of Microbiology, 1978, 116, 77-83.                                                                                                    | 1.0 | 39        |
| 371 | Metabolic regulation in Pseudomonas oxalaticus OX1. Archives of Microbiology, 1978, 116, 85-90.                                                                                                    | 1.0 | 14        |
| 372 | Active transport of oxalate by Pseudomonas oxalaticus OX1. Archives of Microbiology, 1977, 115, 223-227.                                                                                           | 1.0 | 21        |
| 373 | Energy production and growth of Pseudomonas oxalaticus OX1 on oxalate and formate. Archives of Microbiology, 1977, 115, 229-236.                                                                   | 1.0 | 47        |
| 374 | Substrate inhibition inPseudomonas oxalaticus OX1: a kinetic study of growth inhibition by oxalate and formate using extended cultures. Antonie Van Leeuwenhoek, 1975, 41, 135-146.                | 0.7 | 28        |
| 375 | THE RELATION BETWEEN THE GENETIC DETERMINATION AND THE ECOLOGICAL SIGNIFICANCE OF THE SEED WING IN SPERGULARIA MEDIA AND S. MARINA. Acta Botanica Neerlandica, 1972, 21, 481-490.                  | 1.0 | 26        |
| 376 | Cyclodextrin glycosyltransferase as a model enzyme to study of reaction mechanism of the α-amylase<br>family. Special Publication - Royal Society of Chemistry, 0, , 82-86.                        | 0.0 | 0         |