Lubbert Dijkhuizen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8288249/publications.pdf

Version: 2024-02-01

377 papers

21,557 citations

75 h-index

8755

125 g-index

386 all docs

386 docs citations

386 times ranked 13616 citing authors

#	Article	IF	CITATIONS
1	Properties and applications of starch-converting enzymes of the \hat{l}_{\pm} -amylase family. Journal of Biotechnology, 2002, 94, 137-155.	3.8	1,075
2	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	17.5	1,047
3	A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into <i>Mycobacterium tuberculosis</i> survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1947-1952.	7.1	480
4	Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2006, 70, 157-176.	6.6	366
5	Physiological Responses to Nutrient Limitation. Annual Review of Microbiology, 1983, 37, 1-23.	7.3	363
6	Martini Coarse-Grained Force Field: Extension to Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 3195-3210.	5.3	363
7	X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural Biology, 1999, 6, 432-436.	9.7	348
8	Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Applied and Environmental Microbiology, 1985, 49, 673-677.	3.1	336
9	A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development, 2003, 17, 1714-1726.	5.9	301
10	Amyloids â€" a functional coat for microorganisms. Nature Reviews Microbiology, 2005, 3, 333-341.	28.6	264
11	Strategies of mixed substrate utilization in microorganisms. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 297, 459-480.	2.3	260
12	Glucansucrases: Three-dimensional structures, reactions, mechanism, \hat{l}_{\pm} -glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163, 250-272.	3.8	250
13	Nucleotide Sequence and X-ray Structure of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 in a Maltose-dependent Crystal Form. Journal of Molecular Biology, 1994, 236, 590-600.	4.2	228
14	Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Current Opinion in Microbiology, 2004, 7, 255-261.	5.1	228
15	Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). Journal of Bacteriology, 1996, 178, 2238-2244.	2.2	211
16	Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry - A European Journal, 2012, 18, 10786-10801.	3.3	183
17	Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology (United Kingdom), 2004, 150, 3681-3690.	1.8	181
18	The Actinobacterial mce4 Locus Encodes a Steroid Transporter. Journal of Biological Chemistry, 2008, 283, 35368-35374.	3.4	173

#	Article	IF	Citations
19	The Raw Starch Binding Domain of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251. Journal of Biological Chemistry, 1996, 271, 32777-32784.	3.4	172
20	The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.	2.8	171
21	Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BBA - Proteins and Proteomics, 2000, 1543, 336-360.	2.1	159
22	Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology, 2010, 85, 823-835.	3.6	157
23	Characterization of a Novel Fructosyltransferase from Lactobacillus reuteri That Synthesizes High-Molecular-Weight Inulin and Inulin Oligosaccharides. Applied and Environmental Microbiology, 2002, 68, 4390-4398.	3.1	154
24	Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Applied Microbiology and Biotechnology, 1998, 50, 697-703.	3.6	151
25	Structure of Cyclodextrin Glycosyltransferase Complexed with a Maltononaose Inhibitor at 2.6 Ã Resolution. Implications for Product Specificityâ€,‡. Biochemistry, 1996, 35, 4241-4249.	2.5	149
26	The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. FEBS Journal, 2000, 267, 658-665.	0.2	148
27	Site-Directed Mutations in Tyrosine 195 of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 Affect Activity and Product Specificity. Biochemistry, 1995, 34, 3368-3376.	2.5	146
28	Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides Synthesized by the <i>Lactobacillus reuteri</i> Wild-Type Strain and by Mutant Strains. Applied and Environmental Microbiology, 1999, 65, 3008-3014.	3.1	143
29	X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases. Biochemistry, 1995, 34, 2234-2240.	2.5	140
30	Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21406-21411.	7.1	140
31	Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology (United Kingdom), 2004, 150, 2099-2112.	1.8	134
32	Regulation of Streptomyces development: reach for the sky!. Trends in Microbiology, 2006, 14, 313-319.	7.7	133
33	The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Molecular Microbiology, 2004, 53, 433-443.	2.5	132
34	Crystallographic Studies of the Interaction of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 with Natural Substrates and Products. Journal of Biological Chemistry, 1995, 270, 29256-29264.	3.4	131
35	Antibiotic Overproduction in Streptomyces coelicolor A3(2) Mediated by Phosphofructokinase Deletion*. Journal of Biological Chemistry, 2008, 283, 25186-25199.	3.4	131
36	Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiology Letters, 2001, 205, 197-202.	1.8	125

#	Article	IF	CITATIONS
37	Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology (United) Tj $$ ETQq $$ 1 $$ 1 $$	0.784314 1.8	rgBT/Over
38	The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology (United Kingdom), 2006, 152, 1187-1196.	1.8	123
39	Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid Δ 1 -Dehydrogenase Isoenzyme of Rhodococcus erythropolis Strain SQ1. Applied and Environmental Microbiology, 2000, 66, 2029-2036.	3.1	122
40	Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid $\tilde{A}\check{Z}\hat{A}$ "1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiology Letters, 2001, 205, 197-202.	1.8	122
41	Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Molecular Microbiology, 2002, 45, 1007-1018.	2.5	115
42	Cytochrome P450 125 (CYP125) catalyses C26â€hydroxylation to initiate sterol sideâ€chain degradation in <i>Rhodococcus jostii</i> RHA1. Molecular Microbiology, 2009, 74, 1031-1043.	2.5	114
43	The Cyclization Mechanism of Cyclodextrin Glycosyltransferase (CGTase) as Revealed by a \hat{I}^3 -Cyclodextrin-CGTase Complex at 1.8- \hat{A} Resolution. Journal of Biological Chemistry, 1999, 274, 34868-34876.	3.4	111
44	Molecular Characterization of a Novel Glucosyltransferase from Lactobacillus reuteri Strain 121 Synthesizing a Unique, Highly Branched Glucan with \hat{l}_{\pm} -(1 \hat{a}_{\pm} '4) and \hat{l}_{\pm} -(1 \hat{a}_{\pm} '6) Glucosidic Bonds. Applied and Environmental Microbiology, 2002, 68, 4283-4291.	3.1	110
45	Attachment of <i>Streptomyces coelicolor</i> is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Molecular Microbiology, 2009, 73, 1128-1140.	2.5	107
46	Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Marine Ecology - Progress Series, 1996, 131, 307-313.	1.9	103
47	Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Journal of Biological Chemistry, 1998, 273, 5771-5779.	3.4	100
48	Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Molecular Genetics and Genomics, 2008, 279, 545-561.	2.1	100
49	Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. Journal of Bacteriology, 1992, 174, 5346-5353.	2.2	99
50	Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology (United Kingdom), 2004, 150, 621-630.	1.8	99
51	Directed evolution of enzymes: Library screening strategies. IUBMB Life, 2009, 61, 222-228.	3.4	99
52	Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Molecular Microbiology, 2002, 44, 1483-1492.	2.5	96
53	Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Archives of Microbiology, 1989, 152, 280-288.	2.2	95
54	3-Keto-5α-steroid Δ1-dehydrogenase from <i>Rhodococcus erythropolis</i> SQ1 and its orthologue in <i>Mycobacterium tuberculosis</i> H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochemical Journal, 2008, 410, 339-346.	3.7	94

#	Article	IF	Citations
55	Bacillus methanolicus sp. nov., a New Species of Thermotolerant, Methanol-Utilizing, Endospore-Forming Bacteria. International Journal of Systematic Bacteriology, 1992, 42, 439-445.	2.8	93
56	Hydrophobic Amino Acid Residues in the Acceptor Binding Site Are Main Determinants for Reaction Mechanism and Specificity of Cyclodextrin-glycosyltransferase. Journal of Biological Chemistry, 2001, 276, 44557-44562.	3.4	93
57	Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology (United Kingdom), 2010, 156, 1264-1274.	1.8	93
58	Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid î"1-dehydrogenase isoenzyme b bThe GenBank accession number for the sequence reported in this paper is AY078169. Microbiology (United Kingdom), 2002, 148, 3285-3292.	1.8	92
59	Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Applied and Environmental Microbiology, 1995, 61, 1257-1265.	3.1	91
60	Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 2000, 296, 1027-1038.	4.2	89
61	Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme. Journal of Biological Chemistry, 2011, 286, 3520-3530.	3.4	88
62	Structural analysis of the \hat{l}_{\pm} -d-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydrate Research, 2008, 343, 1237-1250.	2.3	86
63	Crystal Structure at 2.3 Å Resolution and Revised Nucleotide Sequence of the Thermostable Cyclodextrin Glycosyltransferase fromThermoanaerobacterium thermosulfurigenesEM1. Journal of Molecular Biology, 1996, 256, 611-622.	4.2	84
64	Amylomaltase of Pyrobaculum aerophilum IM2 Produces Thermoreversible Starch Gels. Applied and Environmental Microbiology, 2005, 71, 5098-5106.	3.1	84
65	Metabolomic Characterization of the Salt Stress Response in <i>Streptomyces coelicolor</i> . Applied and Environmental Microbiology, 2010, 76, 2574-2581.	3.1	84
66	Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid. Biomaterials, 2002, 23, 4847-4854.	11.4	83
67	Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730. Applied and Environmental Microbiology, 2005, 71, 3942-3950.	3.1	82
68	Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14. Molecular Genetics and Genomics, 1991, 225, 320-330.	2.4	81
69	Structures of Maltohexaose and Maltoheptaose Bound at the Donor Sites of Cyclodextrin Glycosyltransferase Give Insight into the Mechanisms of Transglycosylation Activity and Cyclodextrin Size Specificityâ€,‡. Biochemistry, 2000, 39, 7772-7780.	2.5	81
70	4,6-α-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70. Applied and Environmental Microbiology, 2011, 77, 8154-8163.	3.1	81
71	Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiology Letters, 2001, 205, 323-328.	1.8	79
72	The Unique Branching Patterns of <i>Deinococcus</i> Glycogen Branching Enzymes Are Determined by Their N-Terminal Domains. Applied and Environmental Microbiology, 2009, 75, 1355-1362.	3.1	78

#	Article	IF	CITATIONS
73	Diffusion of oxygen in alginate gels related to the kinetics of methanol oxidation by immobilized Hansenula polymorpha cells. European Journal of Applied Microbiology and Biotechnology, 1983, 18, 189-196.	1.3	77
74	Amycolatopsis methanolica sp. nov., a Facultatively Methylotrophic Actinomycete. International Journal of Systematic Bacteriology, 1990, 40, 194-204.	2.8	77
75	The Probiotic <i>Lactobacillus johnsonii</i> NCC 533 Produces High-Molecular-Mass Inulin from Sucrose by Using an Inulosucrase Enzyme. Applied and Environmental Microbiology, 2008, 74, 3426-3433.	3.1	77
76	<i>Rhodococcus rhodochrous</i> DSM 43269 3-Ketosteroid 9α-Hydroxylase, a Two-Component Iron-Sulfur-Containing Monooxygenase with Subtle Steroid Substrate Specificity. Applied and Environmental Microbiology, 2009, 75, 5300-5307.	3.1	77
77	Multiplicity of 3-Ketosteroid-9α-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids. Journal of Bacteriology, 2011, 193, 3931-3940.	2.2	76
78	Rational Transformation of Lactobacillus reuteri 121 Reuteransucrase into a Dextransucrase. Biochemistry, 2005, 44, 9206-9216.	2.5	75
79	Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydrate Research, 2016, 425, 48-58.	2.3	75
80	The Steroid Catabolic Pathway of the Intracellular Pathogen Rhodococcus equi Is Important for Pathogenesis and a Target for Vaccine Development. PLoS Pathogens, 2011, 7, e1002181.	4.7	73
81	Isomalto/Malto-Polysaccharide, A Novel Soluble Dietary Fiber Made Via Enzymatic Conversion of Starch. Journal of Agricultural and Food Chemistry, 2014, 62, 12034-12044.	5.2	73
82	DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. Marine Ecology - Progress Series, 1995, 123, 235-243.	1.9	72
83	Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiology Letters, 2001, 205, 323-328.	1.8	71
84	Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus. Carbohydrate Polymers, 2013, 91, 314-321.	10.2	71
85	Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochemical Society Transactions, 2004, 32, 279-282.	3.4	70
86	Promotion of fibroblast activity by coating with hydrophobins in the \hat{l}^2 -sheet end state. Biomaterials, 2004, 25, 2731-2739.	11.4	68
87	Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnology Advances, 2018, 36, 196-207.	11.7	68
88	Reaction kinetics and galactooligosaccharide product profiles of the \hat{l}^2 -galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 2017, 225, 230-238.	8.2	67
89	Stevia Glycosides. Advances in Carbohydrate Chemistry and Biochemistry, 2016, 73, 1-72.	0.9	65
90	The evolution of cyclodextrin glucanotransferase product specificity. Applied Microbiology and Biotechnology, 2009, 84, 119-133.	3.6	64

#	Article	IF	Citations
91	Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences, 2016, 73, 2681-2706.	5.4	64
92	Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology (United Kingdom), 2006, 152, 3061-3073.	1.8	63
93	Three-way Stabilization of the Covalent Intermediate in Amylomaltase, an α-Amylase-like Transglycosylase. Journal of Biological Chemistry, 2007, 282, 17242-17249.	3.4	63
94	Crystal Structure of Inulosucrase from Lactobacillus: Insights into the Substrate Specificity and Product Specificity of GH68 Fructansucrases. Journal of Molecular Biology, 2011, 412, 80-93.	4.2	63
95	Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture. Archives of Microbiology, 1979, 123, 47-53.	2.2	62
96	Isolation and initial characterization of thermotolerant methylotrophicBacillusstrains. FEMS Microbiology Letters, 1988, 52, 209-214.	1.8	62
97	FadD19 of Rhodococcus rhodochrous DSM43269, a Steroid-Coenzyme A Ligase Essential for Degradation of C-24 Branched Sterol Side Chains. Applied and Environmental Microbiology, 2011, 77, 4455-4464.	3.1	62
98	Structural analysis of the \hat{l}_{\pm} -d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohydrate Research, 2008, 343, 1251-1265.	2.3	61
99	Gas vesicles in actinomycetes: old buoys in novel habitats?. Trends in Microbiology, 2005, 13, 350-354.	7.7	60
100	Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel GTFB 4,6-α-glucanotransferase enzyme from Lactobacillus reuteri 121. Glycobiology, 2012, 22, 517-528.	2.5	60
101	Properties of an NAD(H)-Containing Methanol Dehydrogenase and its Activator Protein from Bacillus methanolicus. FEBS Journal, 1997, 244, 426-433.	0.2	59
102	Synthesis of Branched Polyglucans by the Tandem Action of Potato Phosphorylase and <i>Deinococcus geothermalis</i> Glycogen Branching Enzyme. Macromolecular Rapid Communications, 2008, 29, 1293-1297.	3.9	59
103	Kinetic properties of an inulosucrase fromLactobacillus reuteri121. FEBS Letters, 2003, 534, 207-210.	2.8	58
104	Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity: Toward Tailor-Made Polymer and Oligosaccharide Productsâ€. Biochemistry, 2008, 47, 6678-6684.	2.5	58
105	Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics, 2017, 18, 593.	2.8	58
106	CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. Journal of Bacteriology, 1993, 175, 6097-6104.	2.2	57
107	The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. FEBS Journal, 2000, 267, 3432-3441.	0.2	57
108	Conversion of Cyclodextrin Glycosyltransferase into a Starch Hydrolase by Directed Evolution:  The Role of Alanine 230 in Acceptor Subsite +1,. Biochemistry, 2003, 42, 7518-7526.	2.5	57

#	Article	IF	CITATIONS
109	A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Research, 2008, 36, e151-e151.	14.5	57
110	The LysR-Type Transcriptional Regulator CbbR Controlling Autotrophic CO ₂ Fixation by <i>Xanthobacter flavus</i> Is an NADPH Sensor. Journal of Bacteriology, 1998, 180, 1411-1417.	2.2	57
111	Starch and $\hat{l}\pm$ -glucan acting enzymes, modulating their properties by directed evolution. Journal of Biotechnology, 2009, 140, 184-193.	3.8	56
112	Raw starch-degrading $\hat{l}\pm$ -amylase from <i>Bacillus aquimaris </i> MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Journal of Applied Microbiology, 2013, 114, 108-120.	3.1	56
113	1 H NMR analysis of the lactose/ \hat{l}^2 -galactosidase-derived galacto-oligosaccharide components of Vivinal® GOS up to DP5. Carbohydrate Research, 2014, 400, 59-73.	2.3	54
114	Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Applied and Environmental Microbiology, 2015, 81, 7223-7232.	3.1	54
115	Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable α-amylase-producing strain. Applied Microbiology and Biotechnology, 1994, 41, 155-162.	3.6	53
116	Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek, 2008, 94, 127-143.	1.7	53
117	Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 2012, 30, 366-376.	2.0	53
118	Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. Journal of Bacteriology, 1993, 175, 1814-1822.	2.2	52
119	Molecular and Biochemical Characterization of a Novel Intracellular Invertase from Aspergillus niger with Transfructosylating Activity. Eukaryotic Cell, 2007, 6, 674-681.	3.4	52
120	Land Use Intensity Controls Actinobacterial Community Structure. Microbial Ecology, 2011, 61, 286-302.	2.8	52
121	4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology, 2013, 97, 181-193.	3.6	52
122	Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 13469-13485.	5.2	52
123	Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. Journal of General Microbiology, 1992, 138, 2449-2457.	2.3	51
124	Different Physiological Roles of ATP- and PP i -Dependent Phosphofructokinase Isoenzymes in the Methylotrophic Actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 2001, 183, 7231-7240.	2.2	51
125	Conversion of a Cyclodextrin Glucanotransferase into an α-Amylase:  Assessment of Directed Evolution Strategies. Biochemistry, 2007, 46, 11216-11222.	2.5	51
126	A Bacillus megaterium Plasmid System for the Production, Export, and One-Step Purification of Affinity-Tagged Heterologous Levansucrase from Growth Medium. Applied and Environmental Microbiology, 2006, 72, 1677-1679.	3.1	50

#	Article	IF	Citations
127	Characterization of a Second Rhodococcus erythropolis SQ1 3-Ketosteroid 9α-Hydroxylase Activity Comprising a Terminal Oxygenase Homologue, KshA2, Active with Oxygenase-Reductase Component KshB. Applied and Environmental Microbiology, 2008, 74, 7197-7203.	3.1	50
128	Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different <i>Weissella confusa</i> strains from soya. FEMS Microbiology Letters, 2009, 300, 131-138.	1.8	50
129	Structural Characterization of Bioengineered α-d-Glucans Produced by Mutant Glucansucrase GTF180 Enzymes of Lactobacillus reuteri Strain 180. Biomacromolecules, 2009, 10, 580-588.	5.4	50
130	Methanol, a potential feedstock for biotechnological processes. Trends in Biotechnology, 1985, 3, 262-267.	9.3	49
131	3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie Van Leeuwenhoek, 2014, 106, 157-172.	1.7	49
132	Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut Symbiont Bacteroides thetaiotaomicron. Applied and Environmental Microbiology, 2015, 81, 3973-3983.	3.1	49
133	Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Antonie Van Leeuwenhoek, 1984, 50, 473-487.	1.7	48
134	Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal \hat{l}_{\pm} -amylase enzymes. Microbiology (United Kingdom), 2007, 153, 4003-4015.	1.8	48
135	Energy production and growth of Pseudomonas oxalaticus OX1 on oxalate and formate. Archives of Microbiology, 1977, 115, 229-236.	2.2	47
136	Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. FEBS Letters, 2002, 514, 189-192.	2.8	47
137	Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Letters, 2004, 560, 131-133.	2.8	47
138	Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochemical Journal, 2008, 413, 517-525.	3.7	47
139	Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from <i>Lactobacillus reuteri</i> l>121. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1448-1454.	0.7	47
140	Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. Journal of Biological Chemistry, 1991, 266, 3949-3954.	3.4	47
141	Identification of Acceptor Substrate Binding Subsites +2 and +3 in the Amylomaltase from Thermus thermophilus HB8. Biochemistry, 2007, 46, 5261-5269.	2.5	46
142	Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 1994, 176, 6827-6835.	2.2	45
143	Analysis of DNA Binding and Transcriptional Activation by the LysR-Type Transcriptional Regulator CbbR of Xanthobacter flavus. Journal of Bacteriology, 2003, 185, 1245-1252.	2.2	45
144	Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure, 2017, 25, 231-242.	3.3	45

#	Article	IF	CITATIONS
145	Cross-Feeding among Probiotic Bacterial Strains on Prebiotic Inulin Involves the Extracellular <i>exo</i> -Inulinase of Lactobacillus paracasei Strain W20. Applied and Environmental Microbiology, 2018, 84, .	3.1	45
146	Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the \hat{l}_{\pm} -amylase family. Enzyme and Microbial Technology, 2002, 30, 295-304.	3.2	44
147	The Remote Substrate Binding Subsite â^6 in Cyclodextrin-glycosyltransferase Controls the Transferase Activity of the Enzyme via an Induced-fit Mechanism. Journal of Biological Chemistry, 2002, 277, 1113-1119.	3.4	43
148	Single amino acid residue changes in subsite â^ 1 of inulosucrase from Lactobacillus reuteri 121 strongly influence the size of products synthesized. FEBS Journal, 2006, 273, 4104-4113.	4.7	42
149	NepA is a structural cell wall protein involved in maintenance of spore dormancy in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2009, 71, 1591-1603.	2.5	42
150	4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Scientific Reports, 2017, 7, 39761.	3.3	42
151	Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 2017, 7, 40478.	3.3	41
152	Differentiation and Anaerobiosis in Standing Liquid Cultures of Streptomyces coelicolor. Journal of Bacteriology, 2003, 185, 1455-1458.	2.2	40
153	Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 2020, 60, 123-146.	10.3	40
154	Metabolic regulation in Pseudomonas oxalaticus OX1. Archives of Microbiology, 1978, 116, 77-83.	2.2	39
155	Phenylalanine and tyrosine metabolism in the facultative methylotroph Nocardia sp. 239. Archives of Microbiology, 1988, 149, 459-465.	2.2	39
156	A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. Journal of Bacteriology, 1994, 176, 7087-7090.	2.2	39
157	Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase. Journal of Bacteriology, 1996, 178, 149-155.	2.2	39
158	Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. FEBS Journal, 1998, 253, 598-605.	0.2	39
159	Mutational analysis of the role of calcium ions in theLactobacillus reuteristrain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Letters, 2005, 579, 1124-1128.	2.8	39
160	Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology, 2014, 24, 728-739.	2.5	39
161	The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6- \hat{l} ±-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1224-1236.	2.4	39
162	Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. FEBS Journal, 2002, 270, 155-162.	0.2	38

#	Article	IF	CITATIONS
163	Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins: Structure, Function and Bioinformatics, 2003, 54, 128-134.	2.6	38
164	The Exiguobacteriumsibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes. Applied and Environmental Microbiology, 2016, 82, 756-766.	3.1	38
165	Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. Journal of Biological Chemistry, 1991, 266, 3955-3960.	3.4	38
166	Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. Journal of Biological Chemistry, 1991, 266, 3949-54.	3.4	38
167	Properties of the Glucan Branching Enzyme of the Hyperthermophilic Bacterium (i> Aquifex aeolicus (i>. Biocatalysis and Biotransformation, 2003, 21, 199-207.	2.0	37
168	Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Archives of Microbiology, 1990, 153, 360-367.	2.2	36
169	Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiology Letters, 1992, 99, 107-110.	1.8	36
170	Use of Wisteria floribunda agglutinin affinity chromatography in the structural analysis of the bovine lactoferrin N-linked glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1444-1455.	2.4	36
171	Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Applied Microbiology and Biotechnology, 2012, 93, 645-654.	3.6	36
172	Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2). Applied and Environmental Microbiology, 1997, 63, 956-961.	3.1	36
173	Identification of a Magnesium-dependent NAD(P)(H)-binding Domain in the Nicotinoprotein Methanol Dehydrogenase from Bacillus methanolicus. Journal of Biological Chemistry, 2002, 277, 46966-46973.	3.4	35
174	Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2006, 70, 237-246.	3.6	35
175	Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase. Proteins: Structure, Function and Bioinformatics, 2001, 43, 327-335.	2.6	34
176	The Physiology and Biochemistry of Aerobic Methanol-Utilizing Gram-Negative and Gram-Positive Bacteria., 1992,, 149-181.		34
177	Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol. Journal of General Microbiology, 1993, 139, 1979-1985.	2.3	34
178	[60] 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. Methods in Enzymology, 1990, 188, 391-397.	1.0	33
179	Efficient Screening Methods for Glucosyltransferase Genes inLactobacillusStrains. Biocatalysis and Biotransformation, 2003, 21, 181-187.	2.0	33
180	Two Novel, Putatively Cell Wall-Associated and Glycosylphosphatidylinositol-Anchored α-Glucanotransferase Enzymes of Aspergillus niger. Eukaryotic Cell, 2007, 6, 1178-1188.	3.4	33

#	Article	IF	CITATIONS
181	Export, purification, and activities of affinity tagged Lactobacillus reuteri levansucrase produced by Bacillus megaterium. Applied Microbiology and Biotechnology, 2007, 74, 1062-1073.	3.6	33
182	Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology, 2013, 23, 1084-1096.	2.5	33
183	Residue Leu940 Has a Crucial Role in the Linkage and Reaction Specificity of the Glucansucrase GTF180 of the Probiotic Bacterium Lactobacillus reuteri 180. Journal of Biological Chemistry, 2014, 289, 32773-32782.	3.4	33
184	Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chemistry, 2017, 217, 81-90.	8.2	33
185	Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. Journal of Biological Chemistry, 1991, 266, 3955-60.	3.4	33
186	A new group of glycoside hydrolase family 13 \hat{l} ±-amylases with an aberrant catalytic triad. Scientific Reports, 2017, 7, 44230.	3.3	32
187	Purification and Characterization of an <scp>l</scp> -Aminopeptidase from <i>Pseudomonas putida</i> ATCC 12633. Applied and Environmental Microbiology, 1993, 59, 4330-4334.	3.1	32
188	Regulation of methanol metabolism in the yeast Hansenula polymorpha. Archives of Microbiology, 1987, 147, 375-382.	2.2	31
189	Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14. Journal of General Microbiology, 1990, 136, 2225-2230.	2.3	31
190	Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus. Journal of Bacteriology, 1996, 178, 888-893.	2.2	31
191	Biochemical and crystallographic characterization of a glucansucrase fromLactobacillus reuteri180. Biocatalysis and Biotransformation, 2008, 26, 12-17.	2.0	31
192	Structural Analysis of Bioengineered \hat{l} ±-d-Glucan Produced by a Triple Mutant of the Glucansucrase GTF180 Enzyme from Lactobacillus reuteri Strain 180: Generation of $(\hat{l}$ ±1 \hat{a} †'4) Linkages in a Native $(1\hat{a}$ †'3) $(1\hat{a}$ †'6)- \hat{l} ±-d-Glucan. Biomacromolecules, 2008, 9, 2251-2258.	5. 4	31
193	Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180. Journal of Biological Chemistry, 2015, 290, 30131-30141.	3.4	31
194	Structural and functional characterization of a family GH53 \hat{l}^2 -1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. Journal of Structural Biology, 2019, 205, 1-10.	2.8	31
195	Dietary Nâ€Glycans from Bovine Lactoferrin and TLR Modulation. Molecular Nutrition and Food Research, 2018, 62, 1700389.	3.3	31
196	Regulation of gluconate and ketogluconate production in Gluconobacter oxydans ATCC 621-H. Archives of Microbiology, 1988, 149, 534-539.	2.2	30
197	Synthesis of Malto-Oligosaccharides Via the Acceptor Reaction Catalyzed by Cyclodextrin Glycosyltransferases. Biocatalysis and Biotransformation, 2001, 19, 21-35.	2.0	30
198	Structural Features in the KshA Terminal Oxygenase Protein That Determine Substrate Preference of 3-Ketosteroid 9Â-Hydroxylase Enzymes. Journal of Bacteriology, 2012, 194, 115-121.	2,2	30

#	Article	IF	CITATIONS
199	Engineering of the $\langle i \rangle$ Bacillus circulans $\langle i \rangle$ \hat{l}^2 -Galactosidase Product Specificity. Biochemistry, 2017, 56, 704-711.	2.5	30
200	Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-Î"N-Q1140E improves its taste profile. Food Chemistry, 2019, 272, 653-662.	8.2	30
201	Purification and Characterization of an <scp>l</scp> -Amino Amidase from <i>Mycobacterium neoaurum</i> ATCC 25795. Applied and Environmental Microbiology, 1994, 60, 153-159.	3.1	30
202	Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. FEBS Journal, 2006, 273, 3735-3742.	4.7	29
203	Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains. Applied and Environmental Microbiology, 2015, 81, 6610-6620.	3.1	29
204	Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural and Food Chemistry, 2019, 67, 13969-13977.	5.2	29
205	Substrate inhibition inPseudomonas oxalaticus OX1: a kinetic study of growth inhibition by oxalate and formate using extended cultures. Antonie Van Leeuwenhoek, 1975, 41, 135-146.	1.7	28
206	Metabolic regulation in Pseudomonas oxalaticus OX1. Diauxic growth on mixtures of oxalate and formate or acetate. Archives of Microbiology, 1980, 124-124, 261-268.	2.2	28
207	Uptake of methylamine via an inducible, energy-dependent transport system in the facultative methylotroph Arthrobacter P1. Archives of Microbiology, 1982, 133, 261-266.	2.2	28
208	Purification, characterization and regulation of a monomeric l-phenylalanine dehydrogenase from the facultative methylotroph Nocardia sp. 239. Archives of Microbiology, 1989, 153, 12-18.	2.2	28
209	Highly Efficient Chemoenzymatic Synthesis of Novel Branched Thiooligosaccharides by Substrate Direction with Glucansucrases. ChemBioChem, 2007, 8, 273-276.	2.6	28
210	Carbohydrateâ€binding module 74 is a novel starchâ€binding domain associated with large and multidomain αâ€amylase enzymes. FEBS Journal, 2016, 283, 2354-2368.	4.7	28
211	Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 2018, 8, 16790.	3.3	28
212	A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of methanol and ethanol by Methylobacterium extorquens AM1. Microbiology (United Kingdom), 1996, 142, 675-684.	1.8	27
213	Development of a 1 H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [$\hat{1}^2$ - d -Gal p -($1\hat{a}^+$, x)] n - d -Glc p type. Carbohydrate Research, 2014, 400, 54-58.	2.3	27
214	<i>Lactobacillus reuteri</i> Strains Convert Starch and Maltodextrins into Homoexopolysaccharides Using an Extracellular and Cell-Associated 4,6-î±-Glucanotransferase. Journal of Agricultural and Food Chemistry, 2016, 64, 2941-2952.	5.2	27
215	Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestl $ ilde{A}$ © Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Scientific Reports, 2017, 7, 9947.	3.3	27
216	Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports, 2018, 8, 1516.	3.3	27

#	Article	IF	CITATIONS
217	Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp. in different physiological stages of growth. Aquatic Microbial Ecology, 1997, 12, 11-19.	1.8	27
218	THE RELATION BETWEEN THE GENETIC DETERMINATION AND THE ECOLOGICAL SIGNIFICANCE OF THE SEED WING IN SPERGULARIA MEDIA AND S. MARINA. Acta Botanica Neerlandica, 1972, 21, 481-490.	0.9	26
219	Transformation of the Methylotrophic ActinomyceteAmycolatopis methanolicawith Plasmid DNA: Stimulatory Effect of a pMEA300-Encoded Gene. Plasmid, 1995, 34, 96-104.	1.4	26
220	Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability. Applied Microbiology and Biotechnology, 2015, 99, 5885-5894.	3.6	26
221	Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry, 2018, 253, 236-246.	8.2	26
222	Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. PLoS ONE, 2017, 12, e0172622.	2.5	26
223	Turnover of dimethylsulfoniopropionate and dimethylsulfide in the marine environment:a mesocosm experiment. Marine Ecology - Progress Series, 1996, 145, 223-232.	1.9	26
224	Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0-1. FEMS Microbiology Letters, 1998, 169, 241-249.	1.8	25
225	The fully conserved Asp residue in conserved sequence region I of the \hat{l}_{\pm} -amylase family is crucial for the catalytic site architecture and activity. FEBS Letters, 2003, 541, 47-51.	2.8	25
226	Single Amino Acid Mutations Interchange the Reaction Specificities of Cyclodextrin Glycosyltransferase and the Acarbose-Modifying Enzyme Acarviosyl Transferaseâ€. Biochemistry, 2004, 43, 13204-13213.	2.5	25
227	Structure and Catalytic Mechanism of 3-Ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 Genome. Journal of Biological Chemistry, 2012, 287, 30975-30983.	3.4	25
228	Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Applied Microbiology and Biotechnology, 2015, 99, 4713-4721.	3.6	25
229	Synthesis of New Hyperbranched α-Glucans from Sucrose by <i>Lactobacillus reuteri</i> 180 Glucansucrase Mutants. Journal of Agricultural and Food Chemistry, 2016, 64, 433-442.	5.2	25
230	Glycerol metabolism in the methylotrophic yeast Hansenula polymorpha: phosphorylation as the initial step. Archives of Microbiology, 1987, 148, 314-320.	2,2	24
231	Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains. Archives of Microbiology, 1992, 157, 272-278.	2.2	24
232	Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by a marine Desulfobacterium strain. Archives of Microbiology, 1993, 160, 411-412.	2.2	24
233	Growth of the salt-tolerant yeast in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS Yeast Research, 2003, 3, 313-318.	2.3	24
234	(De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiology (United Kingdom), 2003, 149, 3321-3330.	1.8	24

#	Article	IF	Citations
235	Exo-inulinase of <i> Aspergillus niger </i> N402: A hydrolytic enzyme with significant transfructosylating activity. Biocatalysis and Biotransformation, 2008, 26, 49-58.	2.0	24
236	Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. Journal of Structural Biology, 2013, 184, 301-309.	2.8	24
237	Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydrate Polymers, 2020, 249, 116818.	10.2	24
238	Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology (United Kingdom), 2012, 158, 2168-2179.	1.8	23
239	The role of conserved inulosucrase residues in the reaction and product specificity of <i>Lactobacillusâ€freuteri</i> inulosucrase. FEBS Journal, 2012, 279, 3612-3621.	4.7	23
240	Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269. Microbiology (United Kingdom), 2012, 158, 3054-3062.	1.8	23
241	Biosynthesis of l-Phenylalanine and l-Tyrosine in the Actinomycete Amycolatopsis methanolica. Applied and Environmental Microbiology, 1995, 61, 1298-1302.	3.1	23
242	Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants â^†brlA and â^†flbA. PLoS ONE, 2015, 10, e0116269.	2.5	22
243	Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology, 2018, 102, 7935-7950.	3.6	22
244	Active transport of oxalate by Pseudomonas oxalaticus OX1. Archives of Microbiology, 1977, 115, 223-227.	2.2	21
245	Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes. Archives of Microbiology, 1984, 139, 311-318.	2.2	21
246	Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha. Archives of Microbiology, 1986, 145, 62-70.	2.2	21
247	Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 103-109.	1.8	21
248	<i>N</i> - and <i>O</i> -Glycosylation of a Commercial Bovine Whey Protein Product. Journal of Agricultural and Food Chemistry, 2012, 60, 12553-12564.	5.2	21
249	Biochemical characterization of mutants in the active site residues of the βâ€galactosidase enzyme of <i>Bacillus circulans</i> ATCC 31382. FEBS Open Bio, 2014, 4, 1015-1020.	2.3	21
250	Flexibility of truncated and fullâ€length glucansucrase <scp>GTF</scp> 180 enzymes from <i>LactobacillusÂreuteri</i> 180. FEBS Journal, 2014, 281, 2159-2171.	4.7	21
251	Habitat-specific type I polyketide synthases in soils and street sediments. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 75-85.	3.0	21
252	Dynamic Temporal Variations in Bovine Lactoferrin Glycan Structures. Journal of Agricultural and Food Chemistry, 2020, 68, 549-560.	5.2	21

#	Article	IF	Citations
253	The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food and Function, 2020, 11, 3506-3515.	4.6	21
254	Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins. Biochemical Journal, 1995, 308, 313-320.	3.7	20
255	Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Molecular Microbiology, 1995, 18, 21-31.	2.5	20
256	Galactosyl-Lactose Sialylation Using Trypanosoma cruzi trans-Sialidase as the Biocatalyst and Bovine κ-Casein-Derived Glycomacropeptide as the Donor Substrate. Applied and Environmental Microbiology, 2014, 80, 5984-5991.	3.1	20
257	Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture. Archives of Microbiology, 1979, 123, 55-63.	2.2	19
258	Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0-1. FEMS Microbiology Letters, 1998, 169, 241-249.	1.8	19
259	Molecular, Biochemical, and Functional Characterization of a Nudix Hydrolase Protein That Stimulates the Activity of a Nicotinoprotein Alcohol Dehydrogenase. Journal of Biological Chemistry, 2002, 277, 34785-34792.	3.4	19
260	Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research, 2017, 440-441, 51-62.	2.3	19
261	The evolutionary origin and possible functional roles of FNIII domains in two Microbacterium aurum B8.A granular starch degrading enzymes, and in other carbohydrate acting enzymes. Amylase, 2017, 1, 1-11.	1.6	19
262	Regulation of methylotrophic and heterotrophic metabolism in Arthrobacter P1. Growth on mixtures of methylamine and acetate in batch and continuous cultures. Archives of Microbiology, 1985, 142, 113-120.	2.2	18
263	Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardia sp. 239. Archives of Microbiology, 1989, 151, 319-325.	2.2	18
264	Microbial and enzymatic processes for l-phenylalanine production. Advances in Biochemical Engineering/Biotechnology, 1990, , 1-27.	1.1	18
265	A novel dye-linked alcohol dehydrogenase activity present in some Gram-positive bacteria. FEMS Microbiology Letters, 1991, 80, 57-64.	1.8	18
266	Tetrazolium-Dye-Linked Alcohol Dehydrogenase of the Methylotrophic Actinomycete Amycolatopsis Methanolica is a Three-Component Complex. FEBS Journal, 1997, 247, 280-287.	0.2	18
267	Fructansucrase enzymes and sucrose analogues: A new approach for the synthesis of unique fructo-oligosaccharides. Biocatalysis and Biotransformation, 2008, 26, 32-41.	2.0	18
268	Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohydrate Research, 2015, 414, 85-92.	2.3	18
269	Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans. Journal of Molecular Biology, 2015, 427, 3935-3946.	4.2	18
270	Intriguing Functionality of the Production and Conversion of DMSP in Phaeocystis SP., 1996,, 305-315.		18

#	Article	IF	Citations
271	Development of Slowly Digestible Starch Derived î±-Glucans with 4,6-î±-Glucanotransferase and Branching Sucrase Enzymes. Journal of Agricultural and Food Chemistry, 2020, 68, 6664-6671.	5.2	18
272	Maltodextrin-dependent crystallization of cyclomaltodextrin glucanotransferase from Bacillus circulans. Journal of Molecular Biology, 1990, 214, 807-809.	4.2	17
273	Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. Microbiology (United Kingdom), 2013, 159, 1853-1867.	1.8	17
274	Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransı Lactobacillus reuteri. Scientific Reports, 2016, 6, 35261.	ucrase of	17
275	Glucansucrase Gtf180-Î"N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology, 2016, 100, 7529-7539.	3.6	17
276	A pyridine nucleotide-independent membrane-bound formate dehydrogenase inPseudomonas oxalaticusOX1. FEMS Microbiology Letters, 1979, 6, 53-56.	1.8	16
277	Enzymatic evidence for the operation of the FBP aldolase cleavage and TK/TA re-arrangement variant of the RuMP cycle inArothbacterP1. FEMS Microbiology Letters, 1982, 14, 257-261.	1.8	16
278	Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha. Journal of General Microbiology, 1991, 137, 2381-2386.	2.3	16
279	Structural analysis of a stereochemical modification of flavin adenine dinucleotide in alcohol oxidase from methylotrophic yeasts. Tetrahedron, 1992, 48, 4147-4162.	1.9	16
280	Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. Journal of Biotechnology, 2003, 103, 203-212.	3.8	16
281	Kinetic characterization of Aspergillus niger chitinase Cfcl using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydrate Research, 2015, 407, 73-78.	2.3	16
282	Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from <i>Lactobacillus reuteri</i> and Sucrose as Donor Substrate. Bioconjugate Chemistry, 2016, 27, 937-946.	3.6	16
283	Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate Research, 2019, 479, 13-22.	2.3	16
284	Metabolic regulation in the facultative methylotroph Arthrobacter P1. Growth on primary amines as carbon and energy sources. Archives of Microbiology, 1984, 139-139, 188-195.	2.2	15
285	Isolation and characterization of mutants of the facultative methylotroph Arthrobacter P1 blocked in one-carbon metabolism. Archives of Microbiology, 1987, 146, 346-352.	2.2	15
286	Regulation of methanol metabolism in the facultative methylotroph Nocardia sp. 239 during growth on mixed substrates in batch- and continuous cultures. Archives of Microbiology, 1990, 153, 337-343.	2.2	15
287	Identification and functional analysis of the transfer region of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 1995, 177, 6499-6505.	2.2	15
288	Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS Journal, 2008, 275, 6002-6010.	4.7	15

#	Article	IF	Citations
289	Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance. Food Biophysics, 2012, 7, 220-226.	3.0	15
290	Enzymatic Decoration of Prebiotic Galacto-oligosaccharides (Vivinal GOS) with Sialic Acid UsingTrypanosoma cruzitrans-Sialidase and Two Bovine Sialoglycoconjugates as Donor Substrates. Journal of Agricultural and Food Chemistry, 2015, 63, 5976-5984.	5.2	15
291	Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. BMC Biotechnology, 2015, 15, 49.	3.3	15
292	Metabolic regulation in Pseudomonas oxalaticus OX1. Archives of Microbiology, 1978, 116, 85-90.	2.2	14
293	Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2006, 22, 1347-1356.	3.6	14
294	Characterization of the starvation-induced chitinase CfcA and $\hat{l}\pm 1,3$ -glucanase AgnB of Aspergillus niger. Applied Microbiology and Biotechnology, 2015, 99, 2209-2223.	3.6	14
295	Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by β-Galactosidases from Lactic Acid Bacteria and Bifidobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 4437-4446.	5.2	14
296	Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces viridochromogenes DSM40736 (T $\tilde{A}^{1}/4494$). Microbiology (United Kingdom), 2017, 163, 1030-1041.	1.8	14
297	Chorismate mutase and 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the methylotrophic actinomycete Amycolatopsis methanolica. Applied and Environmental Microbiology, 1995, 61, 3796-3803.	3.1	14
298	Insights into Broad-Specificity Starch Modification from the Crystal Structure of <i>Limosilactobacillus Reuteri</i> NCC 2613 4,6-α-Glucanotransferase GtfB. Journal of Agricultural and Food Chemistry, 2021, 69, 13235-13245.	5.2	14
299	Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Archives of Microbiology, 1986, 144, 272-278.	2.2	13
300	Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in the ribulose monophosphate cycle methylotroph Arthrobacter P1. Archives of Microbiology, 1986, 144, 116-123.	2.2	13
301	Regulation of methanol oxidation and carbon dioxide fixation in Xanthobacter strain 25a grown in continuous culture. Archives of Microbiology, 1991, 155, 159-163.	2.2	13
302	Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. Journal of Bacteriology, 1995, 177, 6666-6669.	2.2	13
303	Growth of the salt-tolerant yeastZygosaccharomyces rouxiiin microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS Yeast Research, 2003, 3, 313-318.	2.3	13
304	Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid, 2008, 59, 202-216.	1.4	13
305	SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiology Letters, 2012, 329, 154-159.	1.8	13
306	Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2017, 449, 59-64.	2.3	13

#	Article	IF	Citations
307	Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant \hat{l}^2 -galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 2018, 465, 58-65.	2.3	12
308	Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. Frontiers in Immunology, 2020, 11, 790.	4.8	12
309	Biochemical Characterization of the Functional Roles of Residues in the Active Site of the β-Galactosidase from <i>Bacillus circulans</i>	2.5	12
310	Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Archives of Microbiology, 1986, 144, 279-285.	2.2	11
311	Emendation of Xanthobacter flavus as a Motile Species. International Journal of Systematic Bacteriology, 1992, 42, 309-311.	2.8	11
312	Fructosebisphosphatase isoenzymes of the chemoautotroph Xanthobacter flavus. Journal of Bacteriology, 1995, 177, 5860-5864.	2.2	11
313	Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization. Scientific Reports, 2016, 6, 36100.	3.3	11
314	3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol Cofactor. Frontiers in Microbiology, 2017, 8, 1110.	3.5	11
315	In Depth Analysis of the Contribution of Specific Glycoproteins to the Overall Bovine Whey N-Linked Glycoprofile. Journal of Agricultural and Food Chemistry, 2020, 68, 6544-6553.	5.2	11
316	Extraction and Quantitative Analysis of Goat Milk Oligosaccharides: Composition, Variation, Associations, and 2′-FL Variability. Journal of Agricultural and Food Chemistry, 2021, 69, 7851-7862.	5.2	11
317	Classical transketolase functions as the formaldehyde-assimilating enzyme during growth of a dihydroxyacetone synthase-negative mutant of the methylotrophic yeastHansenula polymorpha on mixtures of xylose and methanol in continuous cultures. Yeast, 1990, 6, 117-125.	1.7	10
318	Enzymic synthesis of cyclothiomaltins. Chemical Communications, 1996, , 2541.	4.1	10
319	Effects of the Calvin Cycle on Nicotinamide Adenine Dinucleotide Concentrations and Redox Balances of Xanthobacter flavus. Journal of Bacteriology, 2000, 182, 4637-4639.	2.2	10
320	Evolution toward Small Molecule Inhibitor Resistance Affects Native Enzyme Function and Stability, Generating Acarbose-insensitive Cyclodextrin Glucanotransferase Variants. Journal of Biological Chemistry, 2008, 283, 10727-10734.	3.4	10
321	Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydrate Polymers, 2016, 151, 29-39.	10.2	10
322	Molecular characterization of a Rhodococcus jostii RHA1 \hat{i}^3 -butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA. Scientific Reports, 2017, 7, 17743.	3.3	10
323	Synthesis and Characterization of Sialylated Lactose- and Lactulose-Derived Oligosaccharides by <i>Trans-sialidase. Journal of Agricultural and Food Chemistry, 2019, 67, 3469-3479.</i>	5.2	10
324	Engineering of Hydrolysis Reaction Specificity in the Transglycosylase Cyclodextrin Glycosyltransferase. Biocatalysis and Biotransformation, 2003, 21, 261-270.	2.0	9

#	Article	IF	CITATIONS
325	Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiology Ecology, 2007, 61, 285-294.	2.7	9
326	An Unconventional Glycosyl Transfer Reaction: Glucansucrase GTFA Functions as an Allosyltransferase Enzyme. ChemBioChem, 2013, 14, 2423-2426.	2.6	9
327	Thermostability of l-phenylalanine aminotransferase from thermophilic bacteria. Applied Microbiology and Biotechnology, 1987, 27, 292.	3.6	8
328	Nitrogen metabolism in the facultative methylotroph Arthrobacter P1 grown with various amines or ammonia as nitrogen sources. Antonie Van Leeuwenhoek, 1989, 56, 221-232.	1.7	8
329	Mutational analysis of primary alcohol metabolism in the methylotrophic actinomyceteAmycolatopsis methanolica. FEMS Microbiology Letters, 1996, 144, 73-79.	1.8	8
330	A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Applied Microbiology and Biotechnology, 2015, 99, 7101-7113.	3.6	8
331	Modification of linear ($\hat{l}^21\hat{a}^{\dagger}$ '3)-linked gluco-oligosaccharides with a novel recombinant \hat{l}^2 -glucosyltransferase (<i>trans</i> - \hat{l}^2 -glucosidase) enzyme from <i>Bradyrhizobium diazoefficiens</i> - \hat{l}^3 -glucosidase) enzyme from <i>Bradyrhizobium diazoefficiens</i> - \hat{l}^3	2.5	8
332	2′-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. Journal of Functional Foods, 2021, 85, 104630.	3.4	8
333	Purification and characterization of an NAD+-linked formaldehyde dehydrogenase from the facultative RuMP cycle methylotrophArthrobacter P1. Antonie Van Leeuwenhoek, 1992, 62, 201-207.	1.7	7
334	RepAM of the Amycolatopsis methanolica integrative element pMEA300 belongs to a novel class of replication initiator proteins. Microbiology (United Kingdom), 2006, 152, 2943-2950.	1.8	7
335	Positioning functional foods in an ecological approach to the prevention of overweight and obesity. Obesity Reviews, 2008, 9, 464-473.	6.5	7
336	GtfC Enzyme of <i>Geobacillus</i> sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 â†' 6)/(α1 â†' 4) α-Glucan and Delays Bread Staling. Journal of Agricultural and Food Chemistry, 2021, 69, 9859-9868.	5.2	7
337	Properties of the Glucan Branching Enzyme of the Hyperthermophilic Bacterium Aquifex aeolicus. Biocatalysis and Biotransformation, 2003, 21, 199-207.	2.0	7
338	Regulation of Autotrophic Metabolism in Pseudomonas oxalaticus OX1 Wild-type and an Isocitrate-Iyase-deficient Mutant. Microbiology (United Kingdom), 1988, 134, 3231-3237.	1.8	6
339	Methanol metabolism in thermotolerant methylotrophicBacillusspecies. FEMS Microbiology Letters, 1990, 87, 215-220.	1.8	6
340	Metabolic regulation in the yeastHansenula polymorpha. Growth of dihydroxyacetone kinase/glycerol kinase-negative mutants on mixtures of methanol and xylose in continuous cultures. Yeast, 1990, 6, 107-115.	1.7	6
341	[35] Methanol dehydrogenase from thermotolerant METHYLOTROPH Bacillus C1. Methods in Enzymology, 1990, 188, 223-226.	1.0	6
342	Improved method for the isolation of RNA from (standing liquid cultures of) Streptomycetes. Journal of Microbiological Methods, 2004, 58, 139-142.	1.6	6

#	Article	IF	CITATIONS
343	Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology, 2017, 101, 4495-4505.	3.6	6
344	Mutational Analysis of the Role of the Glucansucrase Gtf180-ΔN Active Site Residues in Product and Linkage Specificity with Lactose as Acceptor Substrate. Journal of Agricultural and Food Chemistry, 2018, 66, 12544-12554.	5.2	6
345	Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile. International Dairy Journal, 2020, 110, 104814.	3.0	6
346	Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugarâ€Based Molecules that Target Bacterial Glucosyltransferase. ChemMedChem, 2021, 16, 113-123.	3.2	6
347	The rapid isolation of mutants of some Gram-positive bacteria. FEMS Microbiology Letters, 1981, 12, 51-53.	1.8	5
348	[63] Transaldolase Isoenzymes from Arthrobacter P1. Methods in Enzymology, 1990, 188, 405-411.	1.0	5
349	Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase. Applied Microbiology and Biotechnology, 1990, 32, 693-698.	3.6	5
350	Biosynthesis of aromatic amino acids in Nocardia sp. 239: effects of amino acid analogues on growth and regulatory enzymes. Applied Microbiology and Biotechnology, 1990, 33, 183-189.	3.6	5
351	Isolation and analysis of mutants of the methylotrophic actinomyceteAmycolatopsis methanolicablocked in aromatic amino acid biosynthesis. FEMS Microbiology Letters, 1996, 136, 275-281.	1.8	5
352	High-throughput screening for gene libraries expressing carbohydrate hydrolase activity. Biotechnology Letters, 2003, 25, 1643-1645.	2.2	5
353	Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 Î ² -xylosidase fromGeobacillus thermoleovoransIT-08. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 932-935.	0.7	5
354	Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2018, 470, 57-63.	2.3	5
355	Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Applied Microbiology and Biotechnology, 2019, 103, 707-718.	3.6	5
356	Regulation of Oxidation and Assimilation of One-Carbon Compounds in Methylotrophic Bacteria. , 1991, 18, 127-148.		5
357	Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable ?-amylase-producing strain. Applied Microbiology and Biotechnology, 1994, 41, 155-162.	3.6	5
358	Metabolism of amino acid amides in Pseudomonas putida ATCC 12633. Applied Microbiology and Biotechnology, 1993, 40, 519.	3.6	4
359	Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid \hat{l} (sup>4-(5 \hat{l} +)-dehydrogenase from <i>Rhodococcus jostii</i> RHA1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1269-1273.	0.7	4
360	Metabolic Regulation in Facultative Methylotrophs. , 1987, , 95-104.		4

#	Article	IF	Citations
361	Methanol metabolism in thermotolerant methylotrophic Bacillus species. FEMS Microbiology Letters, 1990, 87, 215-219.	1.8	4
362	A novel dye-linked alcohol dehydrogenase activity present in some Gram-positive bacteria. FEMS Microbiology Letters, 1991, 80, 57-63.	1.8	4
363	Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Critical Reviews in Food Science and Nutrition, 2023, 63, 5247-5267.	10.3	4
364	Draft Genome Sequence of Lactobacillus reuteri 121, a Source of \hat{l} ±-Glucan and \hat{l} 2-Fructan Exopolysaccharides. Genome Announcements, 2017, 5, .	0.8	3
365	Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects. Journal of Dairy Science, 2021, 104, 5056-5068.	3.4	3
366	Mutations in Amino Acid Residues of <i>Limosilactobacillus reuteri</i> 121 GtfB 4,6- \hat{l} ±-Glucanotransferase that Affect Reaction and Product Specificity. Journal of Agricultural and Food Chemistry, 2022, 70, 1952-1961.	5.2	3
367	Isolation of Marine Dimethylsulfide-Oxidizing Bacteria. , 1993, , 37-41.		2
368	Mutational analysis of primary alcohol metabolism in the methylotrophic actinomycete Amycolatopsis methanolica. FEMS Microbiology Letters, 1996, 144, 73-79.	1.8	2
369	Methanol as a fermentation substrate for the production of phenylalanine, tyrosine and tryptophan by the facultative methylotroph Nocardia sp. 239. Antonie Van Leeuwenhoek, 1985, 51, 566-567.	1.7	1
370	The marine sulfur-cycle: Importance of Phaeocystis SP. in DMS-production during a nearshore springbloom. Studies in Environmental Science, 1995, 65, 241-243.	0.0	1
371	Protein engineering of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Progress in Biotechnology, 1995, , 165-174.	0.2	1
372	Actinomycetologists: a vibrant and strong scientific community. Papers from the 14th International Symposium on the Biology of Actinomycetes. Antonie Van Leeuwenhoek, 2008, 94, 1-2.	1.7	1
373	Metabolic Regulation in the Actinomycete Amycolatopsis Methanolica, a Facultative Methylotroph Employing the Rump Cycle for Formaldehyde Assimilation. , 1996, , 9-15.		1
374	Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains. FEMS Microbiology Letters, 1988, 52, 209-214.	1.8	1
375	Isolation and analysis of mutants of the methylotrophic actinomycete Amycolatopsis methanolica blocked in aromatic amino acid biosynthesis. FEMS Microbiology Letters, 1996, 136, 275-281.	1.8	0
376	The Fifth Carbohydrate Bioengineering Meeting was held in Groningen, The Netherlands, April 6–9, 2003. Biocatalysis and Biotransformation, 2003, 21, 145-145.	2.0	0
377	Cyclodextrin glycosyltransferase as a model enzyme to study of reaction mechanism of the α-amylase family. Special Publication - Royal Society of Chemistry, 0, , 82-86.	0.0	0