Sean Coffey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8288115/publications.pdf

Version: 2024-02-01

66 6,640 23 61 g-index

66 66 7002
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Predictors of quality of life after revascularization for ischemic heart disease: A systematic review. Health Sciences Review, 2022, 2, 100017.	1.5	2
2	Dietary fibre in hypertension and cardiovascular disease management: systematic review and meta-analyses. BMC Medicine, 2022, 20, 139.	5.5	42
3	Estimating heart mass from heart volume as measured from post-mortem computed tomography. Forensic Science, Medicine, and Pathology, 2022, 18, 333-342.	1.4	6
4	Identifying sex differences in predictors of epicardial fat cell morphology. Adipocyte, 2022, 11, 325-334.	2.8	1
5	Epithelial Sodium Channel δ Subunit Is Expressed in Human Arteries and Has Potential Association With Hypertension. Hypertension, 2022, 79, 1385-1394.	2.7	9
6	Sex Disparity in Cardiovascular Disease Outcomes: Do Our Current Echocardiographic Reference Ranges Measure Up?. Heart Lung and Circulation, 2021, 30, e1-e5.	0.4	2
7	Microvascular obstruction: time to bust the clot hypothesis?. Heart, 2021, 107, 268-269.	2.9	0
8	Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters. Frontiers in Cell and Developmental Biology, 2021, 9, 633704.	3.7	7
9	Interval imaging to guide treatment in constrictive pericarditis. Heart, 2021, 107, 781-782.	2.9	2
10	Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovascular Diabetology, 2021, 20, 50.	6.8	17
11	Etiology-Dependent Impairment of Diastolic Cardiomyocyte Calcium Homeostasis in HeartÂFailure With Preserved Ejection Fraction. Journal of the American College of Cardiology, 2021, 77, 405-419.	2.8	54
12	Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro. Nutrition and Diabetes, 2021, 11, 8.	3.2	11
13	Diabetes induces dysregulation of microRNAs associated with survival, proliferation and self-renewal in cardiac progenitor cells. Diabetologia, 2021, 64, 1422-1435.	6.3	4
14	Is Australasia Ready for Sonographer-Led Stress Echocardiography?. Heart Lung and Circulation, 2021, 30, 626-628.	0.4	1
15	Global epidemiology of valvular heart disease. Nature Reviews Cardiology, 2021, 18, 853-864.	13.7	217
16	Long-chain acylcarnitine 18:1 acutely increases human atrial myocardial contractility and arrhythmia susceptibility. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H162-H174.	3.2	3
17	Coronary artery disease burden in women poorly explained by traditional risk factors: Sex disaggregated analyses from the BioHEART-CT study. Atherosclerosis, 2021, 333, 100-107.	0.8	4
18	Do we need early risk stratification after ST-elevation myocardial infarction?. Heart, 2021, 107, 1852-1853.	2.9	4

#	Article	IF	CITATIONS
19	Thiamine increases resident endoglin positive cardiac progenitor cells and atrial contractile force in humans: A randomised controlled trial. International Journal of Cardiology, 2021, 341, 70-73.	1.7	1
20	Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Science Translational Medicine, 2020, 12, .	12.4	37
21	Acute interaction between human epicardial adipose tissue and human atrial myocardium induces arrhythmic susceptibility. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E164-E172.	3.5	8
22	Inotropic and lusitropic, but not arrhythmogenic, effects of adipocytokine resistin on human atrial myocardium. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E540-E547.	3.5	4
23	Both Small and Large Infrarenal Aortic Size is Associated with an Increased Prevalence of Ischaemic Heart Disease. European Journal of Vascular and Endovascular Surgery, 2020, 60, 594-601.	1.5	4
24	Review: Detection of patient foramen ovale using transcranial Doppler or standard echocardiography. Australasian Journal of Ultrasound in Medicine, 2020, 23, 210-219.	0.6	6
25	Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 2020, 76, 2982-3021.	2.8	4,468
26	Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 388-399.	4.9	12
27	Beat-to-beat blood pressure measurement using a cuffless device does not accurately reflect invasive blood pressure. International Journal of Cardiology: Hypertension, 2020, 5, 100030.	2.2	9
28	Assessment of Disease Progression in Patients With Repaired Tetralogy of Fallot Using Cardiac Magnetic Resonance Imaging: A Systematic Review. Heart Lung and Circulation, 2020, 29, 1613-1620.	0.4	8
29	Correlation between epicardial adipose tissue and body mass index in New Zealand ethnic populations. New Zealand Medical Journal, 2020, 133, 22-32.	0.5	5
30	Myocardial global longitudinal strain: An early indicator of cardiac interstitial fibrosis modified by spironolactone, in a unique hypertensive rat model. PLoS ONE, 2019, 14, e0220837.	2.5	22
31	Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology, 2019, 43, 107144.	1.6	10
32	STâ€Segment–Elevation Myocardial Infarction (STEMI) Patients Without Standard Modifiable Cardiovascular Risk Factors—How Common Are They, and What Are Their Outcomes?. Journal of the American Heart Association, 2019, 8, e013296.	3.7	102
33	Biobanking for discovery of novel cardiovascular biomarkers using imaging-quantified disease burden: protocol for the longitudinal, prospective, BioHEART-CT cohort study. BMJ Open, 2019, 9, e028649.	1.9	36
34	Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovascular Diabetology, 2019, 18, 13.	6.8	38
35	Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovascular Ultrasound, 2019, 17, 27.	1.6	26
36	Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte, 2019, 8, 412-420.	2.8	39

#	Article	IF	Citations
37	Title is missing!. , 2019, 14, e0220837.		O
38	Title is missing!. , 2019, 14, e0220837.		0
39	Title is missing!. , 2019, 14, e0220837.		0
40	Title is missing!. , 2019, 14, e0220837.		0
41	Serum biomarkers in valvular heart disease. Heart, 2018, 104, 349-358.	2.9	14
42	Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients. Heart, 2018, 104, 1832-1835.	2.9	70
43	Clinical information has low sensitivity for postmortem diagnosis of heart valve disease. Heart, 2017, 103, 1031-1035.	2.9	12
44	The diagnostic sensitivity of circulating cardio-enriched microRNAs is increased after normalization of high-density lipoprotein levels. International Journal of Cardiology, 2017, 236, 498-500.	1.7	6
45	A Replicated, Genome-Wide Significant Association of Aortic Stenosis With a Genetic Variant for Lipoprotein(a). Circulation, 2017, 135, 1181-1183.	1.6	45
46	Protocol and quality assurance for carotid imaging in 100,000 participants of UK Biobank: development and assessment. European Journal of Preventive Cardiology, 2017, 24, 1799-1806.	1.8	27
47	Increasing proportion of ST elevation myocardial infarction patients with coronary atherosclerosis poorly explained by standard modifiable risk factors. European Journal of Preventive Cardiology, 2017, 24, 1824-1830.	1.8	115
48	Valvular heart disease in the elderly: more questions than answers. Journal of Thoracic Disease, 2017, 9, E97-E98.	1.4	1
49	Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study. European Heart Journal, 2016, 37, 3515-3522.	2.2	394
50	Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. European Journal of Preventive Cardiology, 2016, 23, 1578-1589.	1.8	45
51	Integrated microRNA and messenger RNA analysis in aortic stenosis. Scientific Reports, 2016, 6, 36904.	3.3	25
52	Differential expression pattern of cardiovascular microRNAs in the human type-2 diabetic heart with normal ejection fraction. International Journal of Cardiology, 2016, 202, 40-43.	1.7	22
53	The modern epidemiology of heart valve disease. Heart, 2016, 102, 75-85.	2.9	214
54	Surgical management of tricuspid valve endocarditis in the current era: A review. International Journal of Cardiology, 2016, 202, 44-48.	1.7	24

#	Article	IF	CITATION
55	Chamber-specific changes in calcium-handling proteins in the type 2 diabetic human heart with preserved ejection fraction. International Journal of Cardiology, 2015, 193, 53-55.	1.7	10
56	Circulating microRNA Profiling Needs Further Refinement Before Clinical Use in Patients With Aortic Stenosis. Journal of the American Heart Association, 2015, 4, e002150.	3.7	28
57	The Preoperative Evaluation of Infective Endocarditis via 3-Dimensional Transesophageal Echocardiography. Texas Heart Institute Journal, 2015, 42, 372-376.	0.3	22
58	MicroRNAs are central to osteogenesis: a review with a focus on cardiovascular calcification. MicroRNA Diagnostics and Therapeutics, 2015, $1,\ldots$	0.0	1
59	The OxVALVE population cohort study (OxVALVE-PCS)—population screening for undiagnosed valvular heart disease in the elderly: study design and objectives. Open Heart, 2014, 1, e000043.	2.3	14
60	Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovascular Diabetology, 2014, 13, 68.	6.8	45
61	Lack of progress in valvular heart disease in the pre–transcatheter aortic valve replacement era: Increasing deaths and minimal change in mortality rate over the past three decades. American Heart Journal, 2014, 167, 562-567.e2.	2.7	52
62	The Prevalence, Incidence, Progression, and Risks of Aortic Valve Sclerosis. Journal of the American College of Cardiology, 2014, 63, 2852-2861.	2.8	177
63	Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction. Cardiovascular Diabetology, 2014, 13, 72.	6.8	43
64	Letter by Coffey et al Regarding Article, "Estimating Deaths From Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement― Circulation, 2013, 128, e84.	1.6	2
65	The increasing incidence of Streptococcus bovis endocarditis and bacteraemia: A case series from 1997 to 2010. International Journal of Cardiology, 2012, 161, 111-113.	1.7	8
66	Ouetianine-associated cardiomyonathy. New Zealand Medical Journal, 2011, 124, 105-7	0.5	3