P Jeremy Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8287625/publications.pdf

Version: 2024-02-01

59 3,773 28 56
papers citations h-index g-index

62 62 62 4679 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An abundance of X-linked genes expressed in spermatogonia. Nature Genetics, 2001, 27, 422-426.	21.4	735
2	Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 2018, 14, e1007412.	3.5	386
3	Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. Journal of Cell Biology, 2006, 173, 497-507.	5.2	235
4	Hormad1 Mutation Disrupts Synaptonemal Complex Formation, Recombination, and Chromosome Segregation in Mammalian Meiosis. PLoS Genetics, 2010, 6, e1001190.	3.5	179
5	<i> <scp>TEX</scp> 11 </i> is mutated in infertile men with azoospermia and regulates genomeâ€wide recombination rates in mouse. EMBO Molecular Medicine, 2015, 7, 1198-1210.	6.9	145
6	The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes and Development, 2015, 29, 617-629.	5.9	143
7	Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Human Molecular Genetics, 2005, 14, 2911-2918.	2.9	131
8	MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nature Communications, 2013, 4, 2788.	12.8	120
9	RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development (Cambridge), 2005, 132, 4029-4039.	2.5	119
10	Blockade of Pachytene piRNA Biogenesis Reveals a Novel Requirement for Maintaining Post-Meiotic Germline Genome Integrity. PLoS Genetics, 2012, 8, e1003038.	3.5	107
11	X chromosomes, retrogenes and their role in male reproduction. Trends in Endocrinology and Metabolism, 2004, 15, 79-83.	7.1	106
12	Functional substitution for TAFII250 by a retroposed homolog that is expressed in human spermatogenesis. Human Molecular Genetics, 2002, 11, 2341-2346.	2.9	83
13	Mammalian piRNAs. Spermatogenesis, 2014, 4, e27889.	0.8	80
14	RPL10L Is Required for Male Meiotic Division by Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in Mice. Current Biology, 2017, 27, 1498-1505.e6.	3.9	78
15	MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice. PLoS Genetics, 2012, 8, e1002516.	3 . 5	74
16	Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Seminars in Cell and Developmental Biology, 2016, 59, 118-125.	5.0	69
17	<i>Taf7l</i> cooperates with <i>Trf2</i> to regulate spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16886-16891.	7.1	62
18	Dual functions for the ssDNA-binding protein RPA in meiotic recombination. PLoS Genetics, 2019, 15, e1007952.	3 . 5	61

#	Article	IF	Citations
19	Polycomb Protein SCML2 Associates with USP7 and Counteracts Histone H2A Ubiquitination in the XY Chromatin during Male Meiosis. PLoS Genetics, 2015, 11, e1004954.	3.5	58
20	Type I Interferon Controls Propagation of Long Interspersed Element-1. Journal of Biological Chemistry, 2015, 290, 10191-10199.	3.4	56
21	Inactivation of Nxf2 causes defects in male meiosis and age-dependent depletion of spermatogonia. Developmental Biology, 2009, 330, 167-174.	2.0	53
22	Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaksâ€. Biology of Reproduction, 2017, 96, 1096-1104.	2.7	44
23	SKP1 drives the prophase I to metaphase I transition during male meiosis. Science Advances, 2020, 6, eaaz2129.	10.3	44
24	The BRCA2-MEILB2-BRME1 complex governs meiotic recombination and impairs the mitotic BRCA2-RAD51 function in cancer cells. Nature Communications, 2020, 11, 2055.	12.8	42
25	Regulation of Male Fertility by Xâ€Linked Genes. Journal of Andrology, 2010, 31, 79-85.	2.0	41
26	Dual functions of TAF7L in adipocyte differentiation. ELife, 2013, 2, e00170.	6.0	41
27	The Ubiquitin Ligase Ubr2, a Recognition E3 Component of the N-End Rule Pathway, Stabilizes Tex19.1 during Spermatogenesis. PLoS ONE, 2010, 5, e14017.	2.5	37
28	Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell divisions. Developmental Biology, 2012, 369, 356-361.	2.0	37
29	Functions of cyclins and CDKs in mammalian gametogenesisâ€. Biology of Reproduction, 2019, 101, 591-601.	2.7	36
30	TEX15 associates with MILI and silences transposable elements in male germ cells. Genes and Development, 2020, 34, 745-750.	5.9	33
31	HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Research, 2021, 49, 5106-5123.	14.5	25
32	YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis. Cell Reports, 2021, 37, 110110.	6.4	24
33	Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice. Biology of Reproduction, 2016, 95, 103-103.	2.7	23
34	Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Human Molecular Genetics, 2015, 24, 6505-6514.	2.9	18
35	Ubl4b, an X-derived retrogene, is specifically expressed in post-meiotic germ cells in mammals. Gene Expression Patterns, 2007, 7, 131-136.	0.8	17
36	The role of spermatogonially expressed germ cell-specific genes in mammalian meiosis. Chromosome Research, 2007, 15, 623-632.	2.2	17

#	Article	IF	Citations
37	STK31/TDRD8, a Germ Cell-Specific Factor, Is Dispensable for Reproduction in Mice. PLoS ONE, 2014, 9, e89471.	2.5	17
38	The ssDNA-binding protein MEIOB acts as a dosage-sensitive regulator of meiotic recombination. Nucleic Acids Research, 2020, 48, 12219-12233.	14.5	17
39	Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes and Development, 2022, 36, 752-763.	5.9	17
40	A 1.1-Mb Segmental Deletion on the X Chromosome Causes Meiotic Failure in Male Mice. Biology of Reproduction, 2013, 88, 159-159.	2.7	16
41	C2CD6 regulates targeting and organization of the CatSper calcium channel complex in sperm flagella. Development (Cambridge), 2022, 149, .	2.5	15
42	MORC2B is essential for meiotic progression and fertility. PLoS Genetics, 2018, 14, e1007175.	3.5	14
43	<i>Nxf3</i> is expressed in Sertoli cells, but is dispensable for spermatogenesis. Molecular Reproduction and Development, 2011, 78, 241-249.	2.0	13
44	Disruption of Chtf18 Causes Defective Meiotic Recombination in Male Mice. PLoS Genetics, 2012, 8, e1002996.	3.5	13
45	Respiratory failure, cleft palate and epilepsy in the mouse model of human Xq22.1 deletion syndrome. Human Molecular Genetics, 2014, 23, 3823-3829.	2.9	12
46	The novel male meiosis recombination regulator coordinates the progression of meiosis prophase I. Journal of Genetics and Genomics, 2020, 47, 451-465.	3.9	11
47	mRBPome capture identifies the RNA binding protein TRIM71, an essential regulator of spermatogonial differentiation. Development (Cambridge), 2020, 147, .	2.5	11
48	SCF ubiquitin E3 ligase regulates DNA double-strand breaks in early meiotic recombination. Nucleic Acids Research, 2022, 50, 5129-5144.	14.5	11
49	Embryonic lethality and defective male germ cell development in mice lacking UTF1. Scientific Reports, 2017, 7, 17259.	3.3	10
50	yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genetics, 2021, 17, e1009265.	3.5	8
51	Tracking LINE1 retrotransposition in the germline. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7194-7196.	7.1	7
52	Recurrent pregnancy loss in mice lacking the X-linked <i>Ccnb3</i> gene. Biology of Reproduction, 2022, 106, 382-384.	2.7	5
53	FLACC1 is testisâ€specific but dispensable for fertility in mice. Molecular Reproduction and Development, 2020, 87, 1199-1201.	2.0	4
54	Genetic characterization of a missense mutation in the X-linked <i>TAF7L</i> gene identified in an oligozoospermic man. Biology of Reproduction, 2022, 107, 157-167.	2.7	4

#	Article	IF	CITATIONS
55	A cell-based high-content screen identifies isocotoin as a small molecule inhibitor of the meiosis-specific MEIOB–SPATA22 complexâ€. Biology of Reproduction, 2020, 103, 333-342.	2.7	3
56	Golden opportunity for piRNA in female fertility. Nature Cell Biology, 2021, 23, 936-938.	10.3	3
57	Genetics of mammalian meiosis. , 2018, , 106-115.		2
58	Sex Chromosomes and Sex-Linked Genes in Spermatogenesis. , 2018, , 114-119.		0
59	A rat H1tâ€GFP transgene recapitulates endogenous H1t expression pattern in mouse. Genesis, 2020, 58, e23355.	1.6	0