
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alpha-hydroxytropolones are noncompetitive inhibitors of human RNase H1 that bind to the active site and modulate substrate binding. Journal of Biological Chemistry, 2022, 298, 101790.	3.4	1
2	αâ€hydroxytropolones Inhibit RNase H1 Noncompetitively Despite Binding in the Active Site. FASEB Journal, 2022, 36, .	0.5	0
3	Reduction of protein disulfide isomerase results in open conformations and stimulates dynamic exchange between structural ensembles. Journal of Biological Chemistry, 2022, 298, 102217.	3.4	10
4	Bioorthogonal Chemistry Enables Singleâ€Molecule FRET Measurements of Catalytically Active Protein Disulfide Isomerase. ChemBioChem, 2021, 22, 134-138.	2.6	14
5	Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Interfaces, 2021, 13, 27880-27894.	8.0	12
6	Granzyme A Produced by γ9δ2 T Cells Activates ER Stress Responses and ATP Production, and Protects Against Intracellular Mycobacterial Replication Independent of Enzymatic Activity. Frontiers in Immunology, 2021, 12, 712678.	4.8	8
7	An allosteric redox switch in domain V of \hat{I}^22 -glycoprotein I controls membrane binding and anti-domain I autoantibody recognition. Journal of Biological Chemistry, 2021, 297, 100890.	3.4	10
8	Multiple-Organ Complement Deposition on Vascular Endothelium in COVID-19 Patients. Biomedicines, 2021, 9, 1003.	3.2	44
9	A Novel ELISA Assay for the Detection of Anti-Prothrombin Antibodies in Antiphospholipid Syndrome Patients at High Risk of Thrombosis. Frontiers in Immunology, 2021, 12, 741589.	4.8	6
10	Complement Activation and Thrombin Generation by MBL Bound to \hat{I}^22 -Glycoprotein I. Journal of Immunology, 2020, 205, 1385-1392.	0.8	16
11	Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Frontiers in Immunology, 2020, 11, 584241.	4.8	137
12	VE-1902—A direct thrombin inhibitor with reversible covalent mechanism of action shows efficacy with reduced bleeding in rodent models of thrombosis. Thrombosis Research, 2020, 190, 112-121.	1.7	8
13	The J-elongated conformation of β2-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome. Journal of Biological Chemistry, 2020, 295, 10794-10806.	3.4	20
14	A Multimodality Approach to Assessing Factor I Genetic Variants in Atypical Hemolytic Uremic Syndrome. Kidney International Reports, 2019, 4, 1007-1017.	0.8	14
15	Discovery and characterization of 2 novel subpopulations of aPS/PT antibodies in patients at high risk of thrombosis. Blood Advances, 2019, 3, 1738-1749.	5.2	20
16	Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1259-1271.	3.6	102
17	X-Ray Crystallographic and Single-Molecule Fluorescence Studies of Beta-2 Glycoprotein I Reveal an Alternative Mechanism of Autoantibody Recognition. Blood, 2019, 134, 91-91.	1.4	0
18	Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Scientific Reports, 2018, 8, 2945.	3.3	28

#	Article	IF	CITATIONS
19	Enhancing the anticoagulant profile of meizothrombin. Biomolecular Concepts, 2018, 9, 169-175.	2.2	10
20	Lupus anticoagulant identifies two distinct groups of patients with different antibody patterns. Thrombosis Research, 2018, 172, 172-178.	1.7	49
21	Protein engineering by chemical methods: Incorporation of nonnatural amino acids as a tool for studying protein folding, stability, and function. Peptide Science, 2018, 110, e24090.	1.8	4
22	Structure of Coagulation Factor II: Molecular Mechanism of Thrombin Generation and Development of Next-Generation Anticoagulants. Frontiers in Medicine, 2018, 5, 281.	2.6	27
23	Reversible covalent direct thrombin inhibitors. PLoS ONE, 2018, 13, e0201377.	2.5	13
24	Peptide ligand-based ELISA reagents for antibody detection. Analytical Biochemistry, 2018, 559, 55-61.	2.4	11
25	Rational Design of Protein C Activators. Scientific Reports, 2017, 7, 44596.	3.3	6
26	Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles. Journal of Biological Chemistry, 2017, 292, 18344-18353.	3.4	39
27	Molecular mapping of α-thrombin (αT)/β2-glycoprotein I (β2GpI) interaction reveals how β2GpI affects αT functions. Biochemical Journal, 2016, 473, 4629-4650.	3.7	16
28	Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy. Journal of Biological Chemistry, 2016, 291, 18107-18116.	3.4	26
29	Dual effect of histone H4 on prothrombin activation. Journal of Thrombosis and Haemostasis, 2016, 14, 1814-1818.	3.8	5
30	Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin. Biochemistry, 2016, 55, 3984-3994.	2.5	17
31	How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. Journal of Biological Chemistry, 2016, 291, 6071-6082.	3.4	28
32	Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity. PLoS Pathogens, 2016, 12, e1005896.	4.7	7
33	Why Ser and Not Thr Brokers Catalysis in the Trypsin Fold. Biochemistry, 2015, 54, 1457-1464.	2.5	12
34	WEDGE: an anticoagulant thrombin mutant produced by autoactivation. Journal of Thrombosis and Haemostasis, 2015, 13, 111-114.	3.8	5
35	Prothrombin structure: unanticipated features and opportunities. Expert Review of Proteomics, 2014, 11, 653-655.	3.0	11
36	The linker connecting the two kringles plays a key role in prothrombin activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7630-7635.	7.1	37

#	Article	IF	CITATIONS
37	Essential role of conformational selection in ligand binding. Biophysical Chemistry, 2014, 186, 13-21.	2.8	92
38	Histone H4 Promotes Prothrombin Autoactivation. Journal of Biological Chemistry, 2013, 288, 35749-35757.	3.4	57
39	Crystal Structure of Prothrombin Reveals Conformational Flexibility and Mechanism of Activation. Journal of Biological Chemistry, 2013, 288, 22734-22744.	3.4	42
40	Autoactivation of Thrombin Precursors. Journal of Biological Chemistry, 2013, 288, 11601-11610.	3.4	37
41	β2-GlycoproteinÂl binds to thrombin and selectively inhibits the enzyme procoagulant functions. Journal of Thrombosis and Haemostasis, 2013, 11, 1093-1102.	3.8	27
42	Oxidation of Met1606 in von Willebrand factor is a risk factor for thrombotic and septic complications in chronic renal failure. Biochemical Journal, 2012, 442, 423-432.	3.7	18
43	Conformational selection in trypsin-like proteases. Current Opinion in Structural Biology, 2012, 22, 421-431.	5.7	79
44	Exposure of R169 controls protein C activation and autoactivation. Blood, 2012, 120, 664-670.	1.4	23
45	Modeling ADAMTS13-von Willebrand Factor interaction: Implications for oxidative stress-related cardiovascular diseases and type 2A von Willebrand Disease. Biophysical Chemistry, 2012, 160, 1-11.	2.8	7
46	Crystal Structures of Prethrombin-2 Reveal Alternative Conformations under Identical Solution Conditions and the Mechanism of Zymogen Activation. Biochemistry, 2011, 50, 10195-10202.	2.5	40
47	Crystallographic and Kinetic Evidence of Allostery in a Trypsin-like Protease. Biochemistry, 2011, 50, 6301-6307.	2.5	44
48	RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Biochimie, 2011, 93, 1846-1857.	2.6	14
49	Antibodies to Domain I of \hat{I}^2 Clycoprotein I are in close relation to patients risk categories in Antiphospholipid Syndrome (APS). Thrombosis Research, 2011, 128, 583-586.	1.7	68
50	Oxidized von Willebrand factor is efficiently cleaved by serine proteases from primary granules of leukocytes: divergence from ADAMTSâ€13. Journal of Thrombosis and Haemostasis, 2011, 9, 1620-1627.	3.8	17
51	Rigidification of the autolysis loop enhances Na+ binding to thrombin. Biophysical Chemistry, 2011, 159, 6-13.	2.8	21
52	Redesigning allosteric activation in an enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5221-5225.	7.1	25
53	Formation of methionine sulfoxide by peroxynitrite at position 1606 of von Willebrand factor inhibits its cleavage by ADAMTS-13: A new prothrombotic mechanism in diseases associated with oxidative stress. Free Radical Biology and Medicine, 2010, 48, 446-456.	2.9	56
54	Chemical synthesis and characterization of wildâ€ŧype and biotinylated Nâ€ŧerminal domain 1–64 of β2â€glycoprotein I. Protein Science, 2010, 19, 1065-1078.	7.6	23

#	Article	IF	CITATIONS
55	Thrombin Inhibition by Serpins Disrupts Exosite II. Journal of Biological Chemistry, 2010, 285, 38621-38629.	3.4	21
56	Conformational and biochemical characterization of a biologically active rat recombinant Protease Nexin-1 expressed in E. coli. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 602-614.	2.3	11
57	Fibrinogen-elongated Î ³ Chain Inhibits Thrombin-induced Platelet Response, Hindering the Interaction with Different Receptors. Journal of Biological Chemistry, 2008, 283, 30193-30204.	3.4	34
58	The Fibrinogen Elongated \hat{I}^3 -Chain Inhibits Thrombin-Induced Platelet Response, Hindering the Interaction with Different Receptors Blood, 2008, 112, 2023-2023.	1.4	0
59	Post-Transplant Thrombotic Microangiopathy due to a Pathogenic Mutation in Complement Factor I in a Patient With Membranous Nephropathy: Case Report and Review of Literature. Frontiers in Immunology, 0, 13, .	4.8	5