Aimee L Landar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285512/publications.pdf

Version: 2024-02-01

64 papers

5,313 citations

35 h-index 60 g-index

65 all docs 65 docs citations

65 times ranked 7281 citing authors

#	Article	IF	CITATIONS
1	The S100 protein family: History, function, and expression. Brain Research Bulletin, 1995, 37, 417-429.	3.0	853
2	Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochemical Journal, 2004, 378, 373-382.	3.7	531
3	Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radical Biology and Medicine, 2011, 51, 1621-1635.	2.9	372
4	Free Radicals, Mitochondria, and Oxidized Lipids. Circulation Research, 2006, 99, 924-932.	4.5	301
5	Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochemical Journal, 2012, 442, 453-464.	3.7	268
6	Modification of the Mitochondrial Proteome in Response to the Stress of Ethanol-dependent Hepatotoxicity. Journal of Biological Chemistry, 2004, 279, 22092-22101.	3.4	158
7	Acquisition of Temozolomide Chemoresistance in Gliomas Leads to Remodeling of Mitochondrial Electron Transport Chain. Journal of Biological Chemistry, 2010, 285, 39759-39767.	3.4	158
8	Heme Oxygenase-1 Inhibits Renal Tubular Macroautophagy in Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 1702-1712.	6.1	144
9	Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1394-H1409.	3.2	130
10	Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1777-H1787.	3.2	124
11	Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H852-H861.	3.2	122
12	Nitroxia: The pathological consequence of dysfunction in the nitric oxide–cytochrome c oxidase signaling pathway. Free Radical Biology and Medicine, 2005, 38, 297-306.	2.9	107
13	Accumulation of 15-deoxy-î"12,14-prostaglandin J2 adduct formation with Keap1 over time: effects on potency for intracellular antioxidant defence induction. Biochemical Journal, 2008, 411, 297-306.	3.7	104
14	Oxidative Modification of Proteins: An Emerging Mechanism of Cell Signaling. Frontiers in Physiology, 2012, 3, 369.	2.8	104
15	S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. American Journal of Physiology - Renal Physiology, 2006, 291, G857-G867.	3.4	97
16	Activation of Mitogen-Activated Protein Kinases by Lysophosphatidylcholine-Induced Mitochondrial Reactive Oxygen Species Generation in Endothelial Cells. American Journal of Pathology, 2006, 168, 1737-1748.	3.8	86
17	Methods for the determination and quantification of the reactive thiol proteome. Free Radical Biology and Medicine, 2009, 47, 675-683.	2.9	84
18	Mechanisms of signal transduction mediated by oxidized lipids: the role of the electrophile-responsive proteome. Biochemical Society Transactions, 2004, 32, 151-155.	3.4	83

#	Article	IF	Citations
19	Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption. American Journal of Physiology - Renal Physiology, 2004, 286, G521-G527.	3.4	7 5
20	Metastasis Suppressor KISS1 Seems to Reverse the Warburg Effect by Enhancing Mitochondrial Biogenesis. Cancer Research, 2014, 74, 954-963.	0.9	75
21	Three-Dimensional Solution Structure of the Calcium-Signaling Protein Apo-S100A1 As Determined by NMRâ€,‡. Biochemistry, 2002, 41, 788-796.	2.5	73
22	Mitochondrial proteomics in free radical research. Free Radical Biology and Medicine, 2005, 38, 175-188.	2.9	65
23	Induction of the permeability transition and cytochrome c release by 15-deoxy-Δ12,14-prostaglandin J2 in mitochondria. Biochemical Journal, 2006, 394, 185-195.	3.7	65
24	Nitric oxide and hypoxia exacerbate alcohol-induced mitochondrial dysfunction in hepatocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1573-1582.	1.0	61
25	Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. American Journal of Physiology - Renal Physiology, 2013, 305, F255-F264.	2.7	59
26	Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease. World Journal of Gastroenterology, 2007, 13, 4967.	3.3	58
27	Identification of an S100A1/S100B target protein: phosphoglucomutase. Cell Calcium, 1996, 20, 279-285.	2.4	54
28	Mitochondrial targeting of the electrophilic lipid 15-deoxy-î"12,14prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms. Biochemical Journal, 2010, 426, 31-41.	3.7	52
29	Nitric oxide and cell signaling; modulation of redox tone and protein modification. Amino Acids, 2003, 25, 313-321.	2.7	51
30	The Electrophile Responsive Proteome: Integrating Proteomics and Lipidomics with Cellular Function. Antioxidants and Redox Signaling, 2012, 17, 1580-1589.	5.4	51
31	Redox Regulation of Soluble Epoxide Hydrolase by 15-Deoxy-î"-Prostaglandin J ₂ Controls Coronary Hypoxic Vasodilation. Circulation Research, 2011, 108, 324-334.	4.5	50
32	S100A1 Utilizes Different Mechanisms for Interacting with Calcium-Dependent and Calcium-Independent Target Proteins. Biochemistry, 1998, 37, 17429-17438.	2.5	44
33	A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radical Biology and Medicine, 2006, 40, 459-468.	2.9	43
34	Analysis of the liver mitochondrial proteome in response to ethanol and S-adenosylmethionine treatments: novel molecular targets of disease and hepatoprotection. American Journal of Physiology - Renal Physiology, 2010, 298, G732-G745.	3.4	43
35	Proteomic analysis of 4-hydroxynonenal (4-HNE) modified proteins in liver mitochondria from chronic ethanol-fed rats. Redox Biology, 2014, 2, 1038-1047.	9.0	41
36	Redox signalling: from nitric oxide to oxidized lipids. Biochemical Society Symposia, 2004, 71, 107-120.	2.7	36

#	Article	IF	CITATIONS
37	Modulation of mammary cancer cell migration by 15-deoxy-î"12,14-prostaglandin J2: implications for anti-metastatic therapy. Biochemical Journal, 2010, 430, 69-78.	3.7	35
38	Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism. Journal of Biological Chemistry, 2015, 290, 19055-19066.	3.4	34
39	Methods for imaging and detecting modification of proteins by reactive lipid species. Free Radical Biology and Medicine, 2009, 47, 201-212.	2.9	32
40	Homotypic Gap Junctional Communication Associated with Metastasis Suppression Increases with PKA Activity and Is Unaffected by PI3K Inhibition. Cancer Research, 2010, 70, 10002-10011.	0.9	31
41	Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils. Redox Biology, 2016, 9, 57-66.	9.0	31
42	Design, characterization, and structure of a biologically active single-chain mutant of human IFN- \hat{l}^3 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 299, 169-179.	4.2	30
43	Analysis of S100A1 Expression During Skeletal Muscle and Neuronal Cell Differentiation. Journal of Neurochemistry, 1995, 64, 2727-2736.	3.9	29
44	Quercetin prevents left ventricular hypertrophy in the Apo E knockout mouse. Redox Biology, 2013, 1, 381-386.	9.0	29
45	Mitochondrial Bioenergetics of Metastatic Breast Cancer Cells in Response to Dynamic Changes in Oxygen Tension: Effects of HIF-1α. PLoS ONE, 2013, 8, e68348.	2.5	28
46	The role of cysteine residues in S100B dimerization and regulation of target protein activity. BBA - Proteins and Proteomics, 1997, 1343, 117-129.	2.1	27
47	Detection of electrophile-sensitive proteins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 913-922.	2.4	26
48	Weight Loss and Race Modulate Nitric Oxide Metabolism in Overweight Women. Free Radical Biology and Medicine, 2004, 37, 695-702.	2.9	24
49	Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer. Oncotarget, 2015, 6, 43065-43080.	1.8	24
50	The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells. Biochemical Journal, 2009, 419, 427-436.	3.7	23
51	Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biology, 2016, 8, 136-148.	9.0	15
52	1H, 13C and 15N NMR sequence-specific resonance assignments for rat apo-S100A1 (alpha alpha). Journal of Biomolecular NMR, 1999, 14, 91-92.	2.8	14
53	Proteomic Approaches to Identify and Characterize Alterations to the Mitochondrial Proteome in Alcoholic Liver Disease. Methods in Molecular Biology, 2008, 447, 369-380.	0.9	14
54	A Novel Class of Mitochondria-Targeted Soft Electrophiles Modifies Mitochondrial Proteins and Inhibits Mitochondrial Metabolism in Breast Cancer Cells through Redox Mechanisms. PLoS ONE, 2015, 10, e0120460.	2.5	11

#	Article	IF	CITATIONS
55	Subsets of ATPâ€sensitive potassium channel (K _{ATP}) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression. FEBS Letters, 2012, 586, 27-31.	2.8	8
56	Modification of lipids by reactive oxygen and nitrogen species: the oxy–nitroxy–lipidome and its role in redox cell signaling. Future Lipidology, 2006, 1, 203-211.	0.5	7
57	Evidence for oxygen as the master regulator of the responsiveness of soluble guanylate cyclase and cytochrome c oxidase to nitric oxide. Biochemical Journal, 2007, 405, e3-4.	3.7	7
58	The Covalent Advantage: A New Paradigm for Cell Signaling Mediated by Thiol Reactive Lipid Oxidation Products., 2006,, 343-367.		4
59	Methods for Determining the Modification of Protein Thiols by Reactive Lipids. Methods in Cell Biology, 2007, 80, 417-434.	1.1	4
60	Nitric oxide signaling gone awry: Nitration of glutamine synthetase and hyperammonemia in sepsis. Hepatology, 2005, 41, 980-982.	7.3	3
61	The Janus of Oxidative Stress Signaling in Different Pathophysiological Conditions. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-2.	4.0	1
62	Is the soluble guanylate cyclase pathway the only one available for nitric oxide (NO) signaling?. IUBMB Life, 2007, 59, 110-112.	3.4	0
63	S1900 Mitochondrial Complex III Is Decreased in Morbidly Obese Patients with Nonalcoholic Steatohepatitis. Gastroenterology, 2008, 134, A-780.	1.3	0
64	Oxidative Post-Translational Modification of the Regulatory Region of the GTPase Rac1 by 15-Deoxyl 12,14-Prostaglandin J2 in Vascular Endothelial Cells. Free Radical Biology and Medicine, 2011, 51, S33.	2.9	0