D Branch Moody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285220/publications.pdf

Version: 2024-02-01

132 papers 8,851 citations

44069 48 h-index 49909 87 g-index

145 all docs

 $\begin{array}{c} 145 \\ \text{docs citations} \end{array}$

145 times ranked 8178 citing authors

#	Article	IF	Citations
1	Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nature Biotechnology, 2022, 40, 355-363.	17.5	30
2	Effects of BCG vaccination on donor unrestricted T cells in two prospective cohort studies. EBioMedicine, 2022, 76, 103839.	6.1	19
3	Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation. Journal of Immunology, 2022, 208, 1389-1395.	0.8	2
4	A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2255.	12.8	8
5	Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature, 2022, 606, 120-128.	27.8	75
6	Bacterial Strain–Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. MBio, 2022, 13, .	4.1	5
7	Higher native Peruvian genetic ancestry proportion is associated with tuberculosis progression risk. Cell Genomics, 2022, 2, 100151.	6.5	5
8	Atypical sideways recognition of CD1a by autoreactive $\hat{I}^3\hat{I}$ T cell receptors. Nature Communications, 2022, 13, .	12.8	12
9	Remembering Enzo Cerundolo. Molecular Immunology, 2021, 129, 53-55.	2.2	1
10	Synthetic mycobacterial diacyl trehaloses reveal differential recognition by human T cell receptors and the C-type lectin Mincle. Scientific Reports, 2021, 11, 2010.	3.3	7
11	Human skin is colonized by T cells that recognize CD1a independently of lipid. Journal of Clinical Investigation, 2021, 131, .	8.2	31
12	24780 Investigating the role of mycobacterial lipid antigens and CD1-restricted T cells in host-protective tuberculosis immunity using a guinea pig model. Journal of Clinical and Translational Science, 2021, 5, 114-115.	0.6	0
13	Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nature Immunology, 2021, 22, 781-793.	14.5	52
14	CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Journal of Experimental Medicine, 2021, 218, .	8.5	24
15	CD36 family members are TCR-independent ligands for CD1 antigen–presenting molecules. Science Immunology, 2021, 6, .	11.9	7
16	Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
17	Rational design of a hydrolysis-resistant mycobacterial phosphoglycolipid antigen presented by CD1c to T cells. Journal of Biological Chemistry, 2021, 297, 101197.	3.4	5
18	Efficient and precise single-cell reference atlas mapping with Symphony. Nature Communications, 2021, 12, 5890.	12.8	100

#	Article	IF	CITATIONS
19	Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Science Immunology, 2020, 5, .	11.9	42
20	Human $\hat{I}^{3}\hat{I}$ T cells recognize CD1b by two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22944-22952.	7.1	34
21	Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae. Journal of Molecular Biology, 2020, 432, 4023-4031.	4.2	13
22	CD1b Tetramers Broadly Detect T Cells That Correlate With Mycobacterial Exposure but Not Tuberculosis Disease State. Frontiers in Immunology, 2020, 11, 199.	4.8	22
23	Total Synthesis of a Mycolic Acid from <i>Mycobacterium tuberculosis</i> International Edition, 2020, 59, 7555-7560.	13.8	14
24	Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. Journal of Infectious Diseases, 2020, 222, 995-1007.	4.0	19
25	Protein kinases PknA and PknB independently and coordinately regulate essential Mycobacterium tuberculosis physiologies and antimicrobial susceptibility. PLoS Pathogens, 2020, 16, e1008452.	4.7	33
26	Heterologous Production of 1-Tuberculosinyladenosine in Mycobacterium kansasii Models Pathoevolution towards the Transcellular Lifestyle of Mycobacterium tuberculosis. MBio, 2020, 11, .	4.1	9
27	<scp>ER</scp> stress in antigenâ€presenting cells promotes <scp>NKT</scp> cell activation through endogenous neutral lipids. EMBO Reports, 2020, 21, e48927.	4.5	21
28	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	8.0	53
29	The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nature Communications, 2019, 10, 3409.	12.8	11
30	Early progression to active tuberculosis is a highly heritable trait driven by 3q23 in Peruvians. Nature Communications, 2019, 10, 3765.	12.8	43
31	Total Synthesis of an Immunogenic Trehalose Phospholipid from <i>Salmonella</i> Typhi and Elucidation of Its <i>sn</i> Regiochemistry by Mass Spectrometry. Organic Letters, 2019, 21, 5126-5131.	4.6	7
32	Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine, 2019, 37, 3022-3030.	3.8	59
33	CD1b presents self and <i>Borrelia burgdorferi</i> diacylglycerols to human T cells. European Journal of Immunology, 2019, 49, 737-746.	2.9	10
34	Discovery of <i>Salmonella</i> trehalose phospholipids reveals functional convergence with mycobacteria. Journal of Experimental Medicine, 2019, 216, 757-771.	8.5	20
35	A TCR \hat{I}^2 -Chain Motif Biases toward Recognition of Human CD1 Proteins. Journal of Immunology, 2019, 203, 3395-3406.	0.8	10
36	A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nature Communications, 2019, 10, 56.	12.8	31

#	Article	IF	CITATIONS
37	Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio, 2018, 9, .	4.1	57
38	CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chemical Biology, 2018, 25, 392-402.e14.	5.2	23
39	T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nature Immunology, 2018, 19, 397-406.	14.5	52
40	An Antibacterial Î²â€Łactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 348-353.	13.8	55
41	Ein antibakterielles βâ€Lacton bekänpft <i>Mycobacterium tuberculosis</i> durch Infiltration der Mykolsärebiosynthese. Angewandte Chemie, 2018, 130, 354-359.	2.0	3
42	Demethylmenaquinone Methyl Transferase Is a Membrane Domain-Associated Protein Essential for Menaquinone Homeostasis in Mycobacterium smegmatis. Frontiers in Microbiology, 2018, 9, 3145.	3.5	18
43	Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy. Journal of Allergy and Clinical Immunology, 2018, 142, 335-338.e9.	2.9	37
44	Lipids hide or step aside for CD1-autoreactive T cell receptors. Current Opinion in Immunology, 2018, 52, 93-99.	5.5	22
45	Total Synthesis of <i>Mycobacterium tuberculosis</i> Dideoxymycobactinâ€838 and Stereoisomers: Diverse CD1aâ€Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition. Chemistry - A European Journal, 2017, 23, 1694-1701.	3.3	13
46	A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Science lmmunology, 2017, 2, .	11.9	39
47	A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell, 2017, 170, 973-985.e10.	28.9	110
48	Structural determination of lipid antigens captured at the CD1d–T-cell receptor interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8348-8353.	7.1	40
49	CD1bâ€mycolic acid tetramers demonstrate Tâ€cell fine specificity for mycobacterial lipid tails. European Journal of Immunology, 2017, 47, 1525-1534.	2.9	49
50	Four pathways of CD1 antigen presentation to T cells. Current Opinion in Immunology, 2017, 46, 127-133.	5.5	45
51	How T cells grasp mycobacterial lipid antigens. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13312-13314.	7.1	2
52	CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. Journal of Clinical Investigation, 2017, 127, 2339-2352.	8.2	59
53	CD1: From Molecules to Diseases. F1000Research, 2017, 6, 1909.	1.6	9
54	Spatially distinct and metabolically active membrane domain in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5400-5405.	7.1	78

#	Article	IF	CITATIONS
55	Donor-unrestricted T cells in the human CD1 system. Immunogenetics, 2016, 68, 577-596.	2.4	19
56	Elevated and crossâ€responsive CD1aâ€reactive T cells in bee and wasp venom allergic individuals. European Journal of Immunology, 2016, 46, 242-252.	2.9	51
57	T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nature Communications, 2016, 7, 13257.	12.8	59
58	Stereoselective Synthesis of 1-Tuberculosinyl Adenosine; a Virulence Factor of <i>Mycobacterium tuberculosis</i> . Journal of Organic Chemistry, 2016, 81, 6686-6696.	3.2	20
59	Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived phospholipase. Science Translational Medicine, 2016, 8, 325ra18.	12.4	77
60	Monstrous Mycobacterial Lipids. Cell Chemical Biology, 2016, 23, 207-209.	5.2	3
61	Molecular Analysis of Lipid-Reactive Vδ1 γδT Cells Identified by CD1c Tetramers. Journal of Immunology, 2016, 196, 1933-1942.	0.8	72
62	Human autoreactive T cells recognize CD1b and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 380-385.	7.1	85
63	HIV Disrupts Human T Cells That Target Mycobacterial Glycolipids. Journal of Infectious Diseases, 2016, 213, 628-633.	4.0	18
64	Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005351.	4.7	79
65	«scp»CD«/scp»1 Antigen Presentation and Autoreactivity in the Pregnant Human Uterus. American Journal of Reproductive Immunology, 2015, 74, 126-135.	1.2	5
66	Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. Journal of Infectious Diseases, 2015, 212, 1827-1834.	4.0	20
67	$\hat{l}\pm\hat{l}^2$ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nature Immunology, 2015, 16, 258-266.	14.5	112
68	Bee venom processes human skin lipids for presentation by CD1a. Journal of Experimental Medicine, 2015, 212, 149-163.	8.5	98
69	<scp>CD</scp> 1 and mycobacterial lipids activate human T cells. Immunological Reviews, 2015, 264, 138-153.	6.0	72
70	Lipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in M. tuberculosis. PLoS Pathogens, 2015, 11, e1004792.	4.7	37
71	InÂVivo Biosynthesis of Terpene Nucleosides Provides Unique Chemical Markers of Mycobacterium tuberculosis Infection. Chemistry and Biology, 2015, 22, 516-526.	6.0	34
72	Lipid and small-molecule display by CD1 and MR1. Nature Reviews Immunology, 2015, 15, 643-654.	22.7	120

#	Article	IF	CITATIONS
73	The burgeoning family of unconventional T cells. Nature Immunology, 2015, 16, 1114-1123.	14.5	655
74	T Cell Responses against Mycobacterial Lipids and Proteins Are Poorly Correlated in South African Adolescents. Journal of Immunology, 2015, 195, 4595-4603.	0.8	27
75	Donor Unrestricted T Cells: A Shared Human T Cell Response. Journal of Immunology, 2015, 195, 1927-1932.	0.8	77
76	Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by $\hat{l}\pm\hat{l}^2$ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4648-57.	7.1	49
77	Self-poisoning of <i>Mycobacterium tuberculosis</i> by interrupting siderophore recycling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1945-1950.	7.1	94
78	TCR Bias and Affinity Define Two Compartments of the CD1b–Glycolipid-Specific T Cell Repertoire. Journal of Immunology, 2014, 192, 4054-4060.	0.8	64
79	Molecular profiling of <i>Mycobacterium tuberculosis</i> identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2978-2983.	7.1	83
80	Discovery of Invariant T Cells by Next-Generation Sequencing of the Human TCR α-Chain Repertoire. Journal of Immunology, 2014, 193, 5338-5344.	0.8	23
81	The CD1 size problem: lipid antigens, ligands, and scaffolds. Cellular and Molecular Life Sciences, 2014, 71, 3069-3079.	5.4	32
82	CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nature Immunology, 2014, 15, 177-185.	14.5	141
83	Targeted Delivery of Mycobacterial Antigens to Human Dendritic Cells via Siglec-7 Induces Robust T Cell Activation. Journal of Immunology, 2014, 193, 1560-1566.	0.8	54
84	Mycobacterial Lipidomics. Microbiology Spectrum, 2014, 2, .	3.0	26
85	Cutting Edge: CD1a Tetramers and Dextramers Identify Human Lipopeptide–Specific T Cells Ex Vivo. Journal of Immunology, 2013, 191, 4499-4503.	0.8	70
86	Lipoproteins Are Major Targets of the Polyclonal Human T Cell Response to <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2013, 190, 278-284.	0.8	22
87	Lipidomic profiling of model organisms and the world's major pathogens. Biochimie, 2013, 95, 109-115.	2.6	29
88	CD1a, CD1b, and CD1c in Immunity Against Mycobacteria. Advances in Experimental Medicine and Biology, 2013, 783, 181-197.	1.6	46
89	The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013, 499, 178-183.	27.8	416
90	A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nature Immunology, 2013, 14, 706-713.	14.5	187

#	Article	IF	Citations
91	CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. Journal of Experimental Medicine, 2013, 210, 729-741.	8.5	94
92	The bovine CD1D gene has an unusual gene structure and is expressed but cannot present l±-galactosylceramide with a C26 fatty acid. International Immunology, 2013, 25, 91-98.	4.0	16
93	Human CD1a Deficiency Is Common and Genetically Regulated. Journal of Immunology, 2013, 191, 1586-1593.	0.8	37
94	Saposins utilize two strategies for lipid transfer and CD1 antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4357-4364.	7.1	42
95	Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1257-1262.	7.1	61
96	Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity. Nature Medicine, 2012, 18, 1060-1068.	30.7	198
97	Ultralong C100 Mycolic Acids Support the Assignment of Segniliparus as a New Bacterial Genus. PLoS ONE, 2012, 7, e39017.	2.5	20
98	COPI acts in both vesicular and tubular transport. Nature Cell Biology, 2011, 13, 996-1003.	10.3	108
99	CD1b tetramers bind \hat{l} ± \hat{l} 2 T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. Journal of Experimental Medicine, 2011, 208, 1741-1747.	8.5	132
100	A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1537-1549.	6.0	188
101	<i>Borrelia burgdorferi</i> infection regulates CD1 expression in human cells and tissues via IL1â€Î². European Journal of Immunology, 2011, 41, 694-705.	2.9	43
102	Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19335-19340.	7.1	69
103	Analysis of the CD1 Antigen Presenting System in Humanized SCID Mice. PLoS ONE, 2011, 6, e21701.	2.5	31
104	CD1a-autoreactive T cells are a normal component of the human $\hat{l}\pm\hat{l}^2$ T cell repertoire. Nature Immunology, 2010, 11, 1102-1109.	14.5	221
105	CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids. Journal of Experimental Medicine, 2009, 206, 1409-1422.	8.5	47
106	Synthesis of Dideoxymycobactin Antigens Presented by CD1a Reveals T Cell Fine Specificity for Natural Lipopeptide Structures. Journal of Biological Chemistry, 2009, 284, 25087-25096.	3.4	22
107	CD1-restricted adaptive immune responses to <i>Mycobacteria</i> in human group 1 CD1 transgenic mice. Journal of Experimental Medicine, 2009, 206, 2497-2509.	8.5	105
108	Low crossâ€reactivity of Tâ€cell responses against lipids from <i>Mycobacterium bovis</i> and <i>M. avium paratuberculosis</i> during natural infection. European Journal of Immunology, 2009, 39, 3031-3041.	2.9	29

7

#	Article	IF	Citations
109	The evolved functions of CD1 during infection. Current Opinion in Immunology, 2009, 21, 397-403.	5.5	43
110	Serum lipids regulate dendritic cell CD1 expression and function. Immunology, 2008, 125, 289-301.	4.4	71
111	pH-Dependent Interdomain Tethers of CD1b Regulate Its Antigen Capture. Immunity, 2008, 28, 774-786.	14.3	47
112	CD1c Presentation of Synthetic Glycolipid Antigens with Foreign Alkyl Branching Motifs. Chemistry and Biology, 2007, 14, 1232-1242.	6.0	62
113	Total Synthesis of Enantiopure \hat{l}^2 -d-Mannosyl Phosphomycoketides fromMycobacterium tuberculosis. Journal of the American Chemical Society, 2006, 128, 4546-4547.	13.7	73
114	Antigen Processing and Presentation by CD1 Family Proteins. , 2006, , 129-156.		0
115	TLR gateways to CD1 function. Nature Immunology, 2006, 7, 811-817.	14.5	47
116	Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO Journal, 2006, 25, 2989-2999.	7.8	50
117	T-cell recognition of glycolipids presented by CD1 proteins. Glycobiology, 2006, 16, 103R-112R.	2.5	37
118	The Surprising Diversity of Lipid Antigens for CD1â€Restricted T Cells. Advances in Immunology, 2006, 89, 87-139.	2.2	22
119	Anatomy of CD1–lipid antigen complexes. Nature Reviews Immunology, 2005, 5, 387-399.	22.7	165
120	Apolipoprotein-mediated pathways of lipid antigen presentation. Nature, 2005, 437, 906-910.	27.8	323
121	<i>Mycobacterium tuberculosis</i> Regulates CD1 Antigen Presentation Pathways through TLR-2. Journal of Immunology, 2005, 175, 1758-1766.	0.8	118
122	CD1a and CD1c Activate Intrathyroidal T Cells during Graves' Disease and Hashimoto's Thyroiditis. Journal of Immunology, 2005, 174, 3773-3780.	0.8	54
123	Molecular Mechanism of Lipopeptide Presentation by CD1a. Immunity, 2005, 22, 209-219.	14.3	122
124	<i>Mycobacterium tuberculosis pks12</i> Produces a Novel Polyketide Presented by CD1c to T Cells. Journal of Experimental Medicine, 2004, 200, 1559-1569.	8.5	166
125	CD1d-restricted T cell activation by nonlipidic small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13578-13583.	7.1	91
126	T Cell Activation by Lipopeptide Antigens. Science, 2004, 303, 527-531.	12.6	255

#	Article	IF	CITATIONS
127	Intracellular pathways of CD1 antigen presentation. Nature Reviews Immunology, 2003, 3, 11-22.	22.7	169
128	Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nature Immunology, 2002, 3, 435-442.	14.5	146
129	CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature, 2000, 404, 884-888.	27.8	436
130	Cd1b-Mediated T Cell Recognition of a Glycolipid Antigen Generated from Mycobacterial Lipid and Host Carbohydrate during Infection. Journal of Experimental Medicine, 2000, 192, 965-976.	8.5	144
131	The molecular basis of CD 1 -mediated presentation of lipid antigens. Immunological Reviews, 1999, 172, 285-296.	6.0	83
132	Mycobacterial Lipidomics. , 0, , 341-360.		3