Jochen Krauss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284563/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	8.7	1,053
2	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	6.4	620
3	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
4	Author Sequence and Credit for Contributions in Multiauthored Publications. PLoS Biology, 2007, 5, e18.	5.6	413
5	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
6	Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 2015, 6, 8568.	12.8	399
7	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
8	Lifeâ€history traits predict species responses to habitat area and isolation: a cross ontinental synthesis. Ecology Letters, 2010, 13, 969-979.	6.4	336
9	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
10	How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. Journal of Biogeography, 2003, 30, 889-900.	3.0	257
11	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
12	Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 2005, 8, 450-456.	7.1	210
13	Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4447-4456.	2.6	198
14	Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation, 2004, 13, 1427-1439.	2.6	189
15	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.78431 1.9	.4 rgBT /Ove
16	Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 2010, 47, 799-809.	4.0	167
17	Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 2015, 52, 505-513.	4.0	129
18	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117

#	Article	IF	CITATIONS
19	Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology, 2013, 14, 547-554.	2.7	114
20	Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia, 2003, 137, 591-602.	2.0	107
21	Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields. PLoS ONE, 2011, 6, e19502.	2.5	101
22	Desynchronizations in bee–plant interactions cause severe fitness losses in solitary bees. Journal of Animal Ecology, 2018, 87, 139-149.	2.8	88
23	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
24	The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 2012, 27, 121-131.	4.2	78
25	Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography, 2019, 42, 1973-1990.	4.5	77
26	Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology, 2013, 28, 107-120.	4.2	75
27	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
28	Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8368-8373.	7.1	74
29	Habitat area but not habitat age determines wild bee richness in limestone quarries. Journal of Applied Ecology, 2009, 46, 194-202.	4.0	74
30	Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biological Conservation, 2004, 120, 355-361.	4.1	70
31	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	4.1	70
32	Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography, 2005, 28, 465-474.	4.5	67
33	How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands?. Landscape Ecology, 2008, 23, 269-283.	4.2	67
34	Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1301-1306.	2.6	65
35	Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Functional Ecology, 2007, 21, 107.	3.6	62
36	A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60

#	Article	IF	CITATIONS
37	Complementarity among natural enemies enhances pest suppression. Scientific Reports, 2017, 7, 8172.	3.3	58
38	Fungal endosymbionts affect aphid population size by reduction of adult life span and fecundity. Basic and Applied Ecology, 2006, 7, 244-252.	2.7	57
39	Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Molecular Ecology, 2004, 13, 311-320.	3.9	56
40	Biological pest control and yields depend on spatial and temporal crop cover dynamics. Journal of Applied Ecology, 2015, 52, 1283-1292.	4.0	56
41	Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology, 2017, 29, 52-58.	1.6	54
42	Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks. Global Change Biology, 2015, 21, 4086-4097.	9.5	49
43	Agriâ€environmental schemes promote groundâ€dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distanceâ€decay functions. Journal of Applied Ecology, 2019, 56, 10-20.	4.0	48
44	Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agriculture, Ecosystems and Environment, 2019, 284, 106590.	5.3	46
45	Herbivoreâ€specific induction of defence metabolites in a grass–endophyte association. Functional Ecology, 2017, 31, 318-324.	3.6	45
46	Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia, 2016, 182, 1141-1150.	2.0	41
47	Contrasting Effects of Extreme Drought and Snowmelt Patterns on Mountain Plants along an Elevation Gradient. Frontiers in Plant Science, 2017, 8, 1478.	3.6	40
48	lt's a matter of design—how pitfall trap design affects trap samples and possible predictions. PeerJ, 2018, 6, e5078.	2.0	39
49	Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient. Journal of Experimental Botany, 2013, 64, 241-251.	4.8	38
50	Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia, 2014, 175, 613-623.	2.0	36
51	Journal self-citation rates in ecological sciences. Scientometrics, 2007, 73, 79-89.	3.0	33
52	Can Epichloë endophytes enhance direct and indirect plant defence?. Fungal Ecology, 2019, 38, 98-103.	1.6	32
53	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	4.5	30
54	Pest control potential of adjacent agriâ€environment schemes varies with crop type and is shaped by landscape context and withinâ€field position. Journal of Applied Ecology, 2020, 57, 1482-1493.	4.0	30

#	Article	IF	CITATIONS
55	Predation rates on semi-natural grasslands depend on adjacent habitat type. Basic and Applied Ecology, 2013, 14, 614-621.	2.7	29
56	Peramine and Lolitrem B from Endophyte-Grass Associations Cascade Up the Food Chain. Journal of Chemical Ecology, 2013, 39, 1385-1389.	1.8	29
57	Trophic cascades initiated by fungal plant endosymbionts impair reproductive performance of parasitoids in the second generation. Oecologia, 2008, 157, 399-407.	2.0	28
58	Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. Journal of Insect Conservation, 2016, 20, 49-57.	1.4	25
59	A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Scientific Reports, 2017, 7, 14906.	3.3	25
60	Assessing the impact of grassland management on landscape multifunctionality. Ecosystem Services, 2021, 52, 101366.	5.4	25
61	Fungal endosymbionts of plants reduce lifespan of an aphid secondary parasitoid and influence host selection. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2627-2632.	2.6	24
62	Linking Indices for Biodiversity Monitoring to Extinction Risk Theory. Conservation Biology, 2014, 28, 1575-1583.	4.7	23
63	Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant. Journal of Insect Science, 2016, 16, 31.	1.5	21
64	Reconstruction of the colonization route from glacial refugium to the northern distribution range of the European butterfly Polyommatus coridon (Lepidoptera: Lycaenidae). Diversity and Distributions, 2004, 10, 271-274.	4.1	20
65	The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. Journal of Insect Conservation, 2011, 15, 707-714.	1.4	19
66	Extended larval development time for aphid parasitoids in the presence of plant endosymbionts. Ecological Entomology, 2009, 34, 20-25.	2.2	18
67	Combined effects of climate and management on plant diversity and pollination type in alpine grasslands. Diversity and Distributions, 2013, 19, 386-395.	4.1	18
68	Infection Rates and Alkaloid Patterns of Different Grass Species with Systemic <i>Epichloë</i> Endophytes. Applied and Environmental Microbiology, 2019, 85, .	3.1	18
69	Aphid cards–ÂUseful model for assessing predation rates or bias prone nonsense?. Journal of Applied Entomology, 2020, 144, 74-80.	1.8	16
70	Combined Effects of Extreme Climatic Events and Elevation on Nutritional Quality and Herbivory of Alpine Plants. PLoS ONE, 2014, 9, e93881.	2.5	16
71	Allometric density responses in butterflies: the response to small and large patches by small and large species. Ecography, 2010, 33, 1149-1156.	4.5	15
72	Effects of genetic diversity of grass on insect species diversity at higher trophic levels are not due to cascading diversity effects. Oikos, 2011, 120, 1031-1036.	2.7	15

#	Article	IF	CITATIONS
73	Elevation and experimental snowmelt manipulation affect emergence phenology and abundance of soilâ€hibernating arthropods. Ecological Entomology, 2014, 39, 412-418.	2.2	15
74	Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt?. Conservation Genetics, 2015, 16, 549-558.	1.5	15
75	Enhanced aphid abundance in spring desynchronizes predator–prey and plant–microorganism interactions. Oecologia, 2017, 183, 469-478.	2.0	15
76	Natural enemies act faster than endophytic fungi in population control of cereal aphids. Journal of Animal Ecology, 2008, 77, 605-611.	2.8	13
77	Coping with shorter days: do phenology shifts constrain aphid fitness?. PeerJ, 2015, 3, e1103.	2.0	13
78	Knowing your neighbourhood—the effects of <i>Epichloë</i> endophytes on foliar fungal assemblages in perennial ryegrass in dependence of season and land-use intensity. PeerJ, 2018, 6, e4660.	2.0	13
79	Hide and seek – Infection rates and alkaloid concentrations of <i>Epichloë festucae</i> var. <i>lolii</i> in <i>Lolium perenne</i> along a landâ€use gradient in Germany. Grass and Forage Science, 2018, 73, 510-516.	2.9	11
80	Get larger or grow longer wings? Impacts of habitat area and habitat amount on orthopteran assemblages and populations in semi-natural grasslands. Landscape Ecology, 2019, 34, 175-186.	4.2	9
81	Local and landscape responses of biodiversity in calcareous grasslands. Biodiversity and Conservation, 2021, 30, 2415-2432.	2.6	9
82	Epichloë Endophyte Infection Rates and Alkaloid Content in Commercially Available Grass Seed Mixtures in Europe. Microorganisms, 2020, 8, 498.	3.6	8
83	Contrasting Effects of Grass - Endophyte Chemotypes on a Tri-Trophic Cascade. Journal of Chemical Ecology, 2020, 46, 422-429.	1.8	7
84	Changes in the life history traits of the European Map butterfly, Araschnia levana (Lepidoptera:) Tj ETQq0 0 0 rg	BT /Overlo 1.2	ock 10 Tf 50 30
85	Butterfly diversity and historical land cover change along an altitudinal gradient. Journal of Insect Conservation, 2013, 17, 1039-1046.	1.4	6
86	Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. Journal of Plant Ecology, 2014, 7, 490-498.	2.3	6
87	Flower fields and pesticide use interactively shape pollen beetle infestation and parasitism in oilseed rape fields. Journal of Applied Ecology, 2022, 59, 263.	4.0	5
88	Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient. Global Change Biology, 2022, 28, 4027-4040.	9.5	5
89	Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. Arthropod Structure and Development, 2019, 52, 100883.	1.4	4
90	Food colouring as a new possibility to study diet ingestion and honeydew excretion by aphids. Entomologia Experimentalis Et Applicata, 2017, 164, 141-149.	1.4	3

#	Article	IF	CITATIONS
91	Day length constrains the time budget of aphid predators. Insect Science, 2019, 26, 164-170.	3.0	3

Alkaloid Concentrations of Lolium perenne Infected with Epichloë festucae var. lolii with Different Detection Methods—A Re-Evaluation of Intoxication Risk in Germany?. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT\$@verlock210 Tf 50 6

93	Where do hamsters go after cereal harvest? A case study Basic and Applied Ecology, 2021, 54, 98-107.	2.7	2	
----	--	-----	---	--