Steven J Schrodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284530/publications.pdf

Version: 2024-02-01

230014 169272 6,631 63 27 56 citations h-index g-index papers 68 68 68 9921 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Frontiers in Immunology, 2022, 13, 863703.	2.2	11
2	RNA-seq and Network Analysis Reveal Unique Chemokine Activity Signatures in the Synovial Tissue of Patients With Rheumatoid Arthritis. Frontiers in Medicine, 2022, 9, .	1.2	3
3	Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. International Journal of Molecular Sciences, 2021, 22, 9858.	1.8	15
4	MicroRNA Variants and HLA-miRNA Interactions are Novel Rheumatoid Arthritis Susceptibility Factors. Frontiers in Genetics, 2021, 12, 747274.	1.1	14
5	Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Frontiers in Immunology, 2021, 12, 790122.	2.2	58
6	Remediation of ABCG5-Linked Macrothrombocytopenia With Ezetimibe Therapy. Frontiers in Genetics, 2021, 12, 769699.	1.1	1
7	Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 809806.	2.2	87
8	Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing. BMC Medicine, 2020, 18, 200.	2.3	25
9	(5R)-5-Hydroxytriptolide (LLDT-8) induces substantial epigenetic mediated immune response network changes in fibroblast-like synoviocytes from rheumatoid arthritis patients. Scientific Reports, 2019, 9, 11155.	1.6	16
10	Reduced Anti-Histone Antibodies and Increased Risk of Rheumatoid Arthritis Associated with a Single Nucleotide Polymorphism in PADI4 in North Americans. International Journal of Molecular Sciences, 2019, 20, 3093.	1.8	13
11	A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene. Blood, 2019, 133, 1888-1898.	0.6	14
12	Empirical Bayesian approach to testing multiple hypotheses with separate priors for left and right alternatives. Statistical Applications in Genetics and Molecular Biology, 2018, 17, .	0.2	0
13	Postmortem Genetic Testing for Sudden Unexpected Death. JAMA - Journal of the American Medical Association, 2017, 317, 320.	3.8	0
14	Genetic and Functional Associations with Decreased Anti-inflammatory Tumor Necrosis Factor Alpha Induced Protein 3 in Macrophages from Subjects with Axial Spondyloarthritis. Frontiers in Immunology, 2017, 8, 860.	2.2	9
15	The Impact of Diagnostic Code Misclassification on Optimizing the Experimental Design of Genetic Association Studies. Journal of Healthcare Engineering, 2017, 2017, 1-5.	1.1	3
16	Pro-inflammatory immune responses are associated with clinical signs and symptoms of human anaplasmosis. PLoS ONE, 2017, 12, e0179655.	1.1	11
17	Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory. Frontiers in Genetics, 2016, 7, 106.	1.1	1
18	The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem. Frontiers in Genetics, 2016, 7, 217.	1.1	1

#	Article	IF	CITATIONS
19	The Use of Multiplicity Corrections, Order Statistics and Generalized Family-Wise Statistics with Application to Genome-Wide Studies. PLoS ONE, 2016, 11, e0154472.	1.1	6
20	Cell line donor genotype and its influence on experimental phenotype: Toll-like receptor SNPs and potential variability in innate immunity. Molecular Genetics and Metabolism, 2016, 118, 147-152.	0.5	3
21	Validation of a metabolite panel for early diagnosis of type 2 diabetes. Metabolism: Clinical and Experimental, 2016, 65, 1399-1408.	1.5	25
22	Mining Retrospective Data for Virtual Prospective Drug Repurposing: L-DOPA and Age-related Macular Degeneration. American Journal of Medicine, 2016, 129, 292-298.	0.6	66
23	Differential Lipid Response to Statins Is Associated With Variants in the BUD13–APOA5 Gene Region. Journal of Cardiovascular Pharmacology, 2015, 66, 183-188.	0.8	11
24	SeqHBase: a big data toolset for family based sequencing data analysis. Journal of Medical Genetics, 2015, 52, 282-288.	1.5	17
25	Complex host genetic susceptibility to Staphylococcus aureus infections. Trends in Microbiology, 2015, 23, 529-536.	3 . 5	29
26	Prevalence estimation for monogenic autosomal recessive diseases using population-based genetic data. Human Genetics, 2015, 134, 659-669.	1.8	27
27	Phenome-wide association studies (PheWASs) for functional variants. European Journal of Human Genetics, 2015, 23, 523-529.	1.4	38
28	Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE, 2015, 10, e0145453.	1.1	96
29	Calculating Exact P-Values from the McNamara Transmission/Disequilibrium Test Statistic. Journal of Investigative Genomics, $2015, 2, \ldots$	0.2	0
30	Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to Staphylococcus aureus infections. Frontiers in Genetics, 2014, 5, 125.	1.1	38
31	Genetic-based prediction of disease traits: prediction is very difficult, especially about the future \tilde{A} ¢ \hat{a} , $\neg\hat{A}$. Frontiers in Genetics, 2014, 5, 162.	1.1	53
32	Use of an Electronic Medical Record to Create the Marshfield Clinic Twin/Multiple Birth Cohort. Genetic Epidemiology, 2014, 38, 692-698.	0.6	11
33	LYP's implications cause both increased or decreased susceptibility towards autoimmune and acquired diseases (LB96). FASEB Journal, 2014, 28, LB96.	0.2	0
34	A PheWAS approach in studying HLA-DRB1*1501. Genes and Immunity, 2013, 14, 187-191.	2.2	86
35	Genetic evidence of PTPN22 effects on chronic lymphocytic leukemia. Blood, 2013, 121, 237-238.	0.6	10
36	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	9.4	848

#	Article	IF	CITATIONS
37	Broader Considerations of Medical and Dental Data Integration. Computers in Health Care, 2012, , 167-298.	0.2	0
38	Multiple Loci within the Major Histocompatibility Complex Confer Risk of Psoriasis. PLoS Genetics, 2009, 5, e1000606.	1.5	141
39	Further Genetic Evidence for Three Psoriasis-Risk Genes: ADAM33, CDKAL1, and PTPN22. Journal of Investigative Dermatology, 2009, 129, 629-634.	0.3	67
40	Association between IL13 Polymorphisms and Psoriatic Arthritis Is Modified by Smoking. Journal of Investigative Dermatology, 2009, 129, 2777-2783.	0.3	70
41	Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nature Genetics, 2009, 41, 199-204.	9.4	1,229
42	The inflammatory disease–associated variants in <i>IL12B</i> and <i>IL23R</i> are not associated with rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, 1877-1881.	6.7	41
43	Detailed genetic characterization of the interleukin-23 receptor in psoriasis. Genes and Immunity, 2008, 9, 546-555.	2.2	24
44	Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes and Immunity, 2008, 9, 176-181.	2,2	64
45	The 5q31 variants associated with psoriasis and Crohn's disease are distinct. Human Molecular Genetics, 2008, 17, 2978-2985.	1.4	27
46	Genome-wide association scan in psoriasis: new insights into chronic inflammatory disease. Expert Review of Clinical Immunology, 2008, 4, 565-571.	1.3	9
47	A Large-Scale Rheumatoid Arthritis Genetic Study Identifies Association at Chromosome 9q33.2. PLoS Genetics, 2008, 4, e1000107.	1.5	7 5
48	Neither Replication nor Simulation Supports a Role for the Axon Guidance Pathway in the Genetics of Parkinson's Disease. PLoS ONE, 2008, 3, e2707.	1.1	17
49	A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Medicine, 2007, 4, e278.	3.9	232
50	A Large-Scale Genetic Association Study Confirms IL12B and Leads to the Identification of IL23R as Psoriasis-Risk Genes. American Journal of Human Genetics, 2007, 80, 273-290.	2.6	988
51	Metaâ€analysis evidence of a differential risk of the <i>FCRL3</i> â°169Tâ†'C polymorphism in white and East Asian rheumatoid arthritis patients. Arthritis and Rheumatism, 2007, 56, 3168-3171.	6.7	31
52	Pairwise linkage disequilibrium under disease models. European Journal of Human Genetics, 2007, 15, 212-220.	1.4	9
53	Characterization of the Psoriasis-associated IL12B and IL23R Genes. Clinical Immunology, 2007, 123, S126.	1.4	0
54	A Case-Control Association Study of the 12 Single-Nucleotide Polymorphisms Implicated in Parkinson Disease by a Recent Genome Scan. American Journal of Human Genetics, 2006, 78, 1090-1092.	2.6	38

#	Article	IF	CITATIONS
55	Identification of Two Gene Variants Associated With Risk of Advanced Fibrosis in Patients With Chronic Hepatitis C. Gastroenterology, 2006, 130, 1679-1687.	0.6	113
56	Genetic evidence for ubiquitin-specific proteasesUSP24andUSP40as candidate genes for late-onset Parkinson disease. Human Mutation, 2006, 27, 1017-1023.	1.1	53
57	A Probabilistic Approach to Large-Scale Association Scans: A Semi-Bayesian Method to Detect Disease-Predisposing Alleles. Statistical Applications in Genetics and Molecular Biology, 2005, 4, Article31.	0.2	3
58	PTPN22 Genetic Variation: Evidence for Multiple Variants Associated with Rheumatoid Arthritis. American Journal of Human Genetics, 2005, 77, 567-581.	2.6	215
59	Association of late-onset Alzheimer's disease with genetic variation in multiple members of the GAPD gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15688-15693.	3.3	134
60	Selecting Tagging SNPs for Association Studies Using Power Calculations from Genotype Data. Human Heredity, 2004, 57, 156-170.	0.4	24
61	Association of ABCA1 with late-onset Alzheimer's disease is not observed in a case-control study. Neuroscience Letters, 2004, 366, 268-271.	1.0	58
62	A Missense Single-Nucleotide Polymorphism in a Gene Encoding a Protein Tyrosine Phosphatase (PTPN22) Is Associated with Rheumatoid Arthritis. American Journal of Human Genetics, 2004, 75, 330-337.	2.6	1,313
63	Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	4