Thomas Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284001/publications.pdf

Version: 2024-02-01

471509 302126 1,697 49 17 39 citations h-index g-index papers 49 49 49 2102 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Climate change alters host tree physiology and drives plant-insect interactions in forests of the southwestern United States of America., 2022, , 133-152.		1
2	Precipitation change accentuates or reverses temperature effects on aphid dispersal. Ecological Applications, 2022, , e2593.	3.8	10
3	A metaâ€analysis of the effects of habitat aridity, evolutionary history of grazing and grazing intensity on bee and butterfly communities worldwide. Ecological Solutions and Evidence, 2022, 3, .	2.0	1
4	Monitoring resistance and resilience using carbon trajectories: Analysis of forest management–disturbance interactions. Ecological Applications, 2022, 32, .	3.8	7
5	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	10.4	40
6	Probability of occurrence and phenology of pine wilt disease transmission by insect vectors in the Rocky Mountains. Ecological Solutions and Evidence, 2021, 2, e12044.	2.0	5
7	Interspecific variation in spruce constitutive and induced defenses in response to a bark beetleâ€"fungal symbiont provides insight into traits associated with resistance. Tree Physiology, 2021, 41, 1109-1121.	3.1	8
8	Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. Pest Management Science, 2021, 77, 3841-3846.	3.4	18
9	Complex life histories predispose aphids to recent abundance declines. Global Change Biology, 2021, 27, 4283-4293.	9.5	8
10	Plant secondary metabolites and low temperature are the major limiting factors for Beauveria bassiana (BalsCriv.) Vuill. (Ascomycota: Hypocreales) growth and virulence in a bark beetle system. Biological Control, 2020, 141, 104130.	3.0	13
11	Toxicity of two Engelmann spruce (Pinaceae) monoterpene chemotypes from the southern Rocky Mountains to North American spruce beetle (Coleoptera: Scolytidae). Canadian Entomologist, 2020, 152, 790-796.	0.8	3
12	Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains. Scientific Reports, 2020, 10, 16400.	3.3	15
13	Responses of Engelmann spruce to inoculation with Leptographium abietinum, a symbiotic fungus of the North American spruce beetle. Canadian Journal of Forest Research, 2020, 50, 465-472.	1.7	3
14	Livestock grazing is associated with seasonal reduction in pollinator biodiversity and functional dispersion but cheatgrass invasion is not: Variation in bee assemblages in a multi-use shortgrass prairie. PLoS ONE, 2020, 15, e0237484.	2.5	12
15	Factors Associated with Establishment and Growth of Pinus coulteri and Pinus sabiniana in California's Central Coast Bioregion. Forest Science, 2019, 65, 703-713.	1.0	O
16	Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado. Environmental Entomology, 2019, 48, 998-1011.	1.4	7
17	Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1491-1507.	3.0	73
18	Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. Fungal Ecology, 2019, 38, 62-70.	1.6	28

#	Article	IF	Citations
19	Engelmann Spruce Chemotypes in Colorado and their Effects on Symbiotic Fungi Associated with the North American Spruce Beetle. Journal of Chemical Ecology, 2018, 44, 601-610.	1.8	34
20	Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success. Environmental Entomology, 2018, 47, 594-602.	1.4	12
21	Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annual Review of Entomology, 2018, 63, 169-191.	11.8	237
22	An ordinal day model of spruce beetle trap capture phenology in northern Colorado. Journal of Applied Entomology, 2018, 142, 277-281.	1.8	1
23	The Effects ofBean Leafroll Viruson Life History Traits and Host Selection Behavior of Specialized Pea Aphid (Acyrthosiphon pisum, Hemiptera: Aphididae) Genotypes. Environmental Entomology, 2017, 46, nvw150.	1.4	17
24	Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops. Environmental Entomology, 2017, 46, 609-616.	1.4	14
25	Hostâ€adapted aphid populations differ in their migratory patterns and capacity to colonize crops. Journal of Applied Ecology, 2016, 53, 1382-1390.	4.0	9
26	Chickpea variety and phenology affect acquisition of Pea enation mosaic virus, subsequent plant injury and aphid vector performance. Annals of Applied Biology, 2015, 167, 420-425.	2.5	2
27	Environmentally dependent host–pathogen and vector–pathogen interactions in the <i>Barley yellow dwarf virus</i> pathosystem. Journal of Applied Ecology, 2015, 52, 1392-1401.	4.0	78
28	Evidence for additive effects of virus infection and water availability on phytohormone induction in a staple crop. Frontiers in Ecology and Evolution, 2015 , 3 , .	2.2	16
29	Symbiotic Associations of Bark Beetles. , 2015, , 209-245.		62
30	The Ecology of Yeasts in the Bark Beetle Holobiont: A Century of Research Revisited. Microbial Ecology, 2015, 69, 723-732.	2.8	66
31	Aphid behavioral responses to virusâ€infected plants are similar despite divergent fitness effects. Entomologia Experimentalis Et Applicata, 2014, 153, 246-255.	1.4	35
32	Host Settling Behavior, Reproductive Performance, and Effects on Plant Growth of an Exotic Cereal Aphid, <i>Metopolophium festucae </i> subsp. <i>cerealium </i> (Hemiptera: Aphididae). Environmental Entomology, 2014, 43, 682-688.	1.4	7
33	Differing contributions of density dependence and climate to the population dynamics of three eruptive herbivores. Ecological Entomology, 2014, 39, 566-577.	2.2	13
34	Allometry of Phloem Thickness and Resin Flow and Their Relation to Tree Chemotype in a Southwestern Ponderosa Pine Forest. Forest Science, 2014, 60, 270-274.	1.0	12
35	A Survey of Insect Assemblages Responding to Volatiles from a Ubiquitous Fungus in an Agricultural Landscape. Journal of Chemical Ecology, 2013, 39, 860-868.	1.8	56
36	A test of fruit varieties on entry rate and development by neonate larvae of the codling moth, <i><scp>C</scp>ydia pomonella</i> . Entomologia Experimentalis Et Applicata, 2013, 148, 259-266.	1.4	9

#	Article	IF	CITATION
37	Microbial Volatile Emissions as Insect Semiochemicals. Journal of Chemical Ecology, 2013, 39, 840-859.	1.8	386
38	Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a treeâ€killing herbivore. Ecology, 2012, 93, 421-429.	3.2	27
39	Spotted Wing Drosophila, <i>Drosophila suzukii < /i> (Diptera: Drosophilidae), Trapped with Combinations of Wines and Vinegars. Florida Entomologist, 2012, 95, 326-332.</i>	0.5	63
40	Volatile Emissions from an Epiphytic Fungus are Semiochemicals for Eusocial Wasps. Microbial Ecology, 2012, 64, 1056-1063.	2.8	54
41	Experimental Infection of Plants with an Herbivore-Associated Bacterial Endosymbiont Influences Herbivore Host Selection Behavior. PLoS ONE, 2012, 7, e49330.	2.5	55
42	Body size phenotypes are heritable and mediate fecundity but not fitness in the lepidopteran frugivore Cydia pomonella. Die Naturwissenschaften, 2012, 99, 483-491.	1.6	7
43	Reciprocal interactions between the bark beetle-associated yeast <i>Ogataea pini</i> and host plant phytochemistry. Mycologia, 2011, 103, 1201-1207.	1.9	18
44	Oleoresin Chemistry Mediates Oviposition Behavior and Fecundity of a Tree-Killing Bark Beetle. Journal of Chemical Ecology, 2011, 37, 1177-1183.	1.8	5
45	Interactions Between the Yeast Ogataea pini and Filamentous Fungi Associated with the Western Pine Beetle. Microbial Ecology, 2011, 61, 626-634.	2.8	70
46	Effects of Gallery Density and Species Ratio on the Fitness and Fecundity of Two Sympatric Bark Beetles (Coleoptera: Curculionidae). Environmental Entomology, 2009, 38, 639-650.	1.4	27
47	Modeling the Impacts of Two Bark Beetle Species Under a Warming Climate in the Southwestern USA: Ecological and Economic Consequences. Environmental Management, 2009, 44, 824-835.	2.7	46
48	Effects of Seasonality, Forest Structure, and Understory Plant Richness on Bee Community Assemblage in a Southern Rocky Mountain Mixed Conifer Forest. Annals of the Entomological Society of America, 0, , .	2.5	5
49	Canopy cover and seasonality are associated with variation in native bee assemblages across a mixed	1.3	2