List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283908/publications.pdf

Version: 2024-02-01

DANE TI AMB

#	Article	IF	CITATIONS
1	Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 2011, 185, 549-574.	12.4	750
2	Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 2009, 171, 1150-1158.	12.4	108
3	Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions. Environmental Science & Technology, 2021, 55, 8877-8887.	10.0	108
4	Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. Journal of Hazardous Materials, 2021, 401, 123282.	12.4	94
5	Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar. Journal of Hazardous Materials, 2021, 409, 124488.	12.4	84
6	Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 2018, 610-611, 1457-1466.	8.0	74
7	Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 2017, 47, 795-876.	12.8	72
8	Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 2017, 246, 48-56.	9.6	69
9	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environmental Science & Technology, 2013, 47, 4670-4676.	10.0	66
10	Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 2017, 180, 564-573.	8.2	60
11	Comparative Sorption and Mobility of Cr(III) and Cr(VI) Species in a Range of Soils: Implications to Bioavailability. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	50
12	Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites. Critical Reviews in Environmental Science and Technology, 2014, 44, 561-637.	12.8	50
13	Competitive sorption of cadmium and zinc in contrasting soils. Geoderma, 2016, 268, 60-68.	5.1	47
14	Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 2021, 416, 125702.	12.4	46
15	Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils. Journal of Hazardous Materials, 2021, 403, 123931.	12.4	45
16	Rare earth elements (REE) for the removal and recovery of phosphorus: A review. Chemosphere, 2022, 286, 131661.	8.2	43
17	Copper phytotoxicity in native and agronomical plant species. Ecotoxicology and Environmental Safety, 2012, 85, 23-29.	6.0	41
18	Bioaccessibility of arsenic and cadmium assessed for inÂvitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere, 2016, 147, 444-450.	8.2	38

#	Article	IF	CITATIONS
19	Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environment International, 2017, 105, 86-94.	10.0	38
20	Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses. Environmental Science & amp; Technology, 2021, 55, 1779-1789.	10.0	36
21	Arsenic-Imposed Effects on Schwertmannite and Jarosite Formation in Acid Mine Drainage and Coupled Impacts on Arsenic Mobility. ACS Earth and Space Chemistry, 2021, 5, 1418-1435.	2.7	35
22	Sorption parameters as a predictor of arsenic phytotoxicity in Australian soils. Geoderma, 2016, 265, 103-110.	5.1	34
23	Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. Journal of Environmental Management, 2019, 239, 73-83.	7.8	34
24	Relative Tolerance of a Range of Australian Native Plant Species and Lettuce to Copper, Zinc, Cadmium, and Lead. Archives of Environmental Contamination and Toxicology, 2010, 59, 424-432.	4.1	32
25	Effects of pH and Salinity on Copper, Lead, and Zinc Sorption Rates in Sediments from Moreton Bay, Australia. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 1041-1048.	2.7	29
26	Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation. Journal of Hazardous Materials, 2020, 399, 123029.	12.4	29
27	Use of Biosolids for Phytocapping of Landfill Soil. Water, Air, and Soil Pollution, 2012, 223, 2695-2705.	2.4	27
28	Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicology and Environmental Safety, 2015, 122, 252-259.	6.0	27
29	Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere, 2015, 138, 422-428.	8.2	27
30	Bioavailability of lead in contaminated soil depends on the nature of bioreceptor. Ecotoxicology and Environmental Safety, 2012, 78, 344-350.	6.0	25
31	Natural Attenuation of Zn, Cu, Pb and Cd in Three Biosolids-Amended Soils of Contrasting pH Measured Using Rhizon Pore Water Samplers. Water, Air, and Soil Pollution, 2011, 221, 351-363.	2.4	24
32	Comparative values of various wastewater streams as a soil nutrient source. Chemosphere, 2018, 192, 272-281.	8.2	24
33	Predicting plant uptake of cadmium: validated with long-term contaminated soils. Ecotoxicology, 2016, 25, 1563-1574.	2.4	23
34	Zinc-arsenic interactions in soil: Solubility, toxicity and uptake. Chemosphere, 2017, 187, 357-367.	8.2	22
35	Influence of ageing on lead bioavailability in soils: a swine study. Environmental Science and Pollution Research, 2015, 22, 8979-8988.	5.3	19
36	Bioaccessibility of barium from barite contaminated soils based on gastric phase inÂvitro data and plant uptake. Chemosphere, 2016, 144, 1421-1427.	8.2	19

#	Article	IF	CITATIONS
37	Phytotoxicity and Accumulation of Lead in Australian Native Vegetation. Archives of Environmental Contamination and Toxicology, 2010, 58, 613-621.	4.1	18
38	Simultaneously determining multi-metal ions using an ion selective electrode array system. Environmental Technology and Innovation, 2016, 6, 165-176.	6.1	17
39	Copper behaviour in a Podosol. 1. pH-dependent sorption - desorption, sorption isotherm analysis, and aqueous speciation modelling. Soil Research, 2005, 43, 491.	1.1	16
40	Copper interactions on arsenic bioavailability and phytotoxicity in soil. Ecotoxicology and Environmental Safety, 2018, 148, 738-746.	6.0	16
41	Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Ecotoxicology and Environmental Safety, 2021, 223, 112611.	6.0	16
42	Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil. Environmental Science & Technology, 2016, 50, 13062-13069.	10.0	15
43	The application of rapid handheld FTIR petroleum hydrocarbon-contaminant measurement with transport models for site assessment: A case study. Geoderma, 2020, 361, 114017.	5.1	15
44	The influence of long-term ageing on arsenic ecotoxicity in soil. Journal of Hazardous Materials, 2021, 407, 124819.	12.4	15
45	Adsorption–Desorption Behavior of Arsenate Using Single and Binary Iron-Modified Biochars: Thermodynamics and Redox Transformation. ACS Omega, 2022, 7, 101-117.	3.5	14
46	Pyrogenic carbon in Australian soils. Science of the Total Environment, 2017, 586, 849-857.	8.0	13
47	Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species. Chemosphere, 2021, 275, 130135.	8.2	13
48	Antimony speciation, phytochelatin stimulation and toxicity in plants. Environmental Pollution, 2022, 305, 119305.	7.5	13
49	Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra. Talanta, 2015, 144, 1104-1110.	5.5	12
50	Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing. Chemosphere, 2022, 296, 134053.	8.2	12
51	Predicting copper phytotoxicity based on pore-water pCu. Ecotoxicology, 2016, 25, 481-490.	2.4	11
52	Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions. Environmental Science and Pollution Research, 2016, 23, 15460-15470.	5.3	11
53	Transformation of Antimonate at the Biochar–Solution Interface. ACS ES&T Water, 2021, 1, 2029-2036.	4.6	10
54	Phosphorus application enhances alkane hydroxylase gene abundance in the rhizosphere of wild plants grown in petroleum-hydrocarbon-contaminated soil. Environmental Research, 2022, 204, 111924.	7.5	10

#	Article	IF	CITATIONS
55	Application of mathematical models and genetic algorithm to simulate the response characteristics of an ion selective electrode array for system recalibration. Chemometrics and Intelligent Laboratory Systems, 2015, 144, 24-30.	3.5	9
56	Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE Method. Environmental Science and Pollution Research, 2017, 24, 5585-5594.	5.3	9
57	Application of Ion Selective Electrode array to simultaneously determinate multi-free ions in solution. Environmental Technology and Innovation, 2019, 15, 100424.	6.1	9
58	Antimonate sequestration from aqueous solution using zirconium, iron and zirconium-iron modified biochars. Scientific Reports, 2021, 11, 8113.	3.3	9
59	Copper behaviour in a Podosol. 2. Sorption reversibility, geochemical partitioning, and column leaching. Soil Research, 2005, 43, 503.	1.1	9
60	Kinetics, Isotherms and Adsorption–Desorption Behavior of Phosphorus from Aqueous Solution Using Zirconium–Iron and Iron Modified Biosolid Biochars. Water (Switzerland), 2021, 13, 3320.	2.7	9
61	Remediation of Pb-contaminated soil using modified bauxite refinery residue. Journal of Hazardous Materials, 2022, 437, 129339.	12.4	8
62	Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Chemosphere, 2016, 154, 343-349.	8.2	7
63	Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 183-188.	3.9	7
64	Evaluation of relative bioaccessibility leaching procedure for an assessment of lead bioavailability in mixed metal contaminated soils. Environmental Technology and Innovation, 2017, 7, 229-238.	6.1	6
65	Health Risk Assessment of Arsenic, Manganese, and Iron from Drinking Water for High School Children. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	6
66	Effects of the ephemeral stream on plant species diversity and distribution in an alluvial fan of arid desert region: An application of a low altitude UAV. PLoS ONE, 2019, 14, e0212057.	2.5	5
67	Phytocapping of Mine Waste at Derelict Mine Sites in New South Wales. , 2017, , 215-239.		5
68	Response of phosphorus sensitive plants to arsenate. Environmental Technology and Innovation, 2021, 24, 102008.	6.1	4
69	Novel recalibration methodologies for ionâ€selective electrode arrays in the multiâ€ion interference scenario. Journal of Chemometrics, 2017, 31, e2870.	1.3	3
70	Remediation of Frogmore Mine Spoiled Soil with Nano Enhanced Materials. Soil and Sediment Contamination, 2022, 31, 367-385.	1.9	2
71	Are root elongation assays suitable for establishing metallic anion ecotoxicity thresholds?. Journal of Hazardous Materials Letters, 2021, 2, 100024.	3.6	2
72	Selenium Accumulation and Speciation in Chickpea (<i>Cicer arietinum</i>) Impacted by S in Soils: Potential for Biofortification. ACS Agricultural Science and Technology, 2022, 2, 135-143.	2.3	2

#	Article	IF	CITATIONS
73	Impact of Sulfur on Biofortification and Speciation of Selenium in Wheat Grain Grown in Selenium-Deficient Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 3243-3253.	3.4	2
74	Tooeleite Transformation and Coupled As(III) Mobilization Are Induced by Fe(II) under Anoxic, Circumneutral Conditions. Environmental Science & Technology, 2022, 56, 9446-9452.	10.0	2