Narendra B Dahotre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Spatially Varying Thermokinetics on the Electrochemical Response of Laser Additively Manufactured Ti6Al4V. Advanced Engineering Materials, 2022, 24, 2100938.	3.5	3
2	Electrochemical and thermal-induced degradation of additively manufactured titanium alloys: a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 915-954.	12.3	2
3	Cyclic Thermal Dependent Microstructure Evolution During Laser Directed Energy Deposition of H13 Steel. Transactions of the Indian Institute of Metals, 2022, 75, 1007-1014.	1.5	2
4	Effect of Spatially Varying Thermokinetics on the Electrochemical Response of Laser Additively Manufactured Ti6Al4V. Advanced Engineering Materials, 2022, 24, .	3.5	0
5	Additive friction stir deposition of AZ31B magnesium alloy. Journal of Magnesium and Alloys, 2022, 10, 2404-2420.	11.9	30
6	Engineering heterogeneous microstructures in additively manufactured high entropy alloys for high strength and strain hardenability. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143505.	5.6	9
7	Laser fabrication of structural bone: surface morphology and biomineralization assessment. Lasers in Medical Science, 2021, 36, 131-137.	2.1	2
8	Reducing coercivity by chemical ordering in additively manufactured soft magnetic Fe–Co (Hiperco) alloys. Journal of Alloys and Compounds, 2021, 861, 157998.	5.5	16
9	Crystallographic texture dependent bulk anisotropic elastic response of additively manufactured Ti6Al4V. Scientific Reports, 2021, 11, 633.	3.3	16
10	Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy. Journal of Magnesium and Alloys, 2021, 9, 1406-1406.	11.9	20
11	Spatial Variation of Thermokinetics and Associated Microstructural Evolution in Laser Surface Engineered IN718: Precursor to Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2344-2360.	2.2	8
12	Thermomechanically influenced dynamic elastic constants of laser powder bed fusion additively manufactured Ti6Al4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 140990.	5.6	16
13	Effect of micro-segregation of alloying elements on the precipitation behaviour in laser surface engineered Alloy 718. Acta Materialia, 2021, 210, 116844.	7.9	42
14	Tribo-corrosion response of additively manufactured high-entropy alloy. Npj Materials Degradation, 2021, 5, .	5.8	16
15	Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141627.	5.6	16
16	Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V. Acta Materialia, 2021, 213, 116954.	7.9	41
17	A Review of Diagnostics Methodologies for Metal Additive Manufacturing Processes and Products. Materials, 2021, 14, 4929.	2.9	19
18	Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach. Journal of Manufacturing Processes, 2021, 68, 852-866.	5.9	28

#	Article	IF	CITATIONS
19	Influence of high heating rates on evolution of oxides on directed laser energy additively fabricated IN718. Npj Materials Degradation, 2021, 5, .	5.8	6
20	Process induced multi-layered Titanium – Boron carbide composites via additive manufacturing. Additive Manufacturing, 2021, 46, 102156.	3.0	3
21	In-situ monitoring and ex-situ elasticity mapping of laser induced metal melting pool using ultrasound: Numerical and experimental approaches. Journal of Manufacturing Processes, 2021, 71, 178-186.	5.9	7
22	Tribology of rejuvenated CuZr-based amorphous alloys. Wear, 2021, 484-485, 204018.	3.1	3
23	Mechanically tunable ultrasonic metamaterial lens with a subwavelength resolution at long working distances for bioimaging. Smart Materials and Structures, 2021, 30, 015022.	3.5	8
24	Manufacturing and Characterization of Hybrid Bulk Voxelated Biomaterials Printed by Digital Anatomy 3D Printing. Polymers, 2021, 13, 123.	4.5	16
25	Suppression and reactivation of transformation and twinning induced plasticity in laser powder bed fusion additively manufactured Ti-10V-2Fe-3Al. Additive Manufacturing, 2021, 48, 102406.	3.0	3
26	Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy. Materialia, 2020, 9, 100522.	2.7	46
27	In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Materials Science and Engineering C, 2020, 109, 110632.	7.3	65
28	Evolution of surface morphology of Er:YAG laser-machined human bone. Lasers in Medical Science, 2020, 35, 1477-1485.	2.1	10
29	Spatial response of laser powder bed additively manufactured Ti6Al4V to temperature variation of aqueous electrolyte. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7
30	Novel 2D Dynamic Elasticity Maps for Inspection of Anisotropic Properties in Fused Deposition Modeling Objects. Polymers, 2020, 12, 1966.	4.5	14
31	Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy. Scientific Reports, 2020, 10, 7579.	3.3	51
32	Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles. Sensors, 2020, 20, 3053.	3.8	9
33	Magnetic and mechanical properties of an additively manufactured equiatomic CoFeNi complex concentrated alloy. Scripta Materialia, 2020, 187, 30-36.	5.2	38
34	Laser patterned hydroxyapatite surfaces on AZ31B magnesium alloy for consumable implant applications. Materialia, 2020, 11, 100693.	2.7	12
35	In situ reactions during direct laser deposition of Ti-B4C composites. Scripta Materialia, 2020, 183, 28-32.	5.2	53
36	Rapid thermokinetics driven nanoscale vanadium clustering within martensite laths in laser powder bed fused additively manufactured Ti6Al4V. Materials Research Letters, 2020, 8, 383-389.	8.7	33

#	Article	IF	CITATIONS
37	In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioactive Materials, 2020, 5, 891-901.	15.6	51
38	Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head. Surface and Coatings Technology, 2020, 387, 125473.	4.8	25
39	Laser surface engineering of B4C/Fe nano composite coating on low carbon steel: Experimental coupled with computational approach. Materials and Design, 2020, 190, 108576.	7.0	16
40	Thermal Assessment of Ex Vivo Laser Ablation of Cortical Bone. ACS Biomaterials Science and Engineering, 2020, 6, 2415-2426.	5.2	5
41	Oxidation-induced healing in laser-processed thermal barrier coatings. Thin Solid Films, 2019, 688, 137481.	1.8	8
42	Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Materials Science and Engineering C, 2019, 105, 110028.	7.3	26
43	Fundamentals of three-dimensional Yb-fiber Nd:YAG laser machining of structural bone. Journal of Applied Physics, 2019, 126, .	2.5	12
44	Tribocorrosion performance of laser additively processed high-entropy alloy coatings on aluminum. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	13
45	Laser coating of bioactive glasses on bioimplant titanium alloys. International Journal of Applied Glass Science, 2019, 10, 307-320.	2.0	26
46	Technological Innovations in Metals Engineering. Jom, 2019, 71, 651-654.	1.9	0
47	Electrochemical and DFT studies of laser-alloyed TiB2/TiC/Al coatings on aluminium alloy. Corrosion Science, 2018, 136, 18-27.	6.6	21
48	Laser coating of a CrMoTaWZr complex concentrated alloy onto a H13 tool steel die head. Surface and Coatings Technology, 2018, 348, 150-158.	4.8	35
49	Integrated experimental and computational approach to laser machining of structural bone. Medical Engineering and Physics, 2018, 51, 56-66.	1.7	8
50	Rationalizing surface hardening of laser glazed grey cast iron via an integrated experimental and computational approach. Materials and Design, 2018, 156, 570-585.	7.0	21
51	Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements. International Journal of Advanced Manufacturing Technology, 2018, 97, 4043-4054.	3.0	12
52	A review of the physiological and histological effects of laser osteotomy. Journal of Medical Engineering and Technology, 2017, 41, 1-12.	1.4	35
53	Crystallisation behaviour during tensile loading of laser treated Fe–Si–B metallic glass. Philosophical Magazine, 2017, 97, 497-514.	1.6	8
54	Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material. Lasers in Medical Science, 2017, 32, 797-803.	2.1	40

#	Article	IF	CITATIONS
55	Laser Surface Engineering for Tribology. , 2017, , 661-687.		5
56	Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum. Jom, 2016, 68, 1819-1829.	1.9	1
57	Fundamental Operations of Bone Machining. , 2016, , 23-44.		0
58	In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering. Jom, 2016, 68, 1932-1937.	1.9	12
59	Laser joining of plain carbon steel using Fe-based amorphous alloy filler powder. Journal of Materials Processing Technology, 2016, 238, 55-64.	6.3	7
60	Effect of friction stir processing on microstructure and mechanical properties of laser-processed Mg 4Y 3Nd alloy. Materials and Design, 2016, 110, 663-675.	7.0	28
61	Optimization of laser thermal treatment of Fe–Si–B metallic glass. Journal of Manufacturing Processes, 2016, 24, 31-37.	5.9	12
62	Additive Manufacturing via Surface Engineering. Jom, 2016, 68, 1759-1761.	1.9	5
63	Machining of Bone and Hard Tissues. , 2016, , .		20
64	Thermodynamics and kinetics of laser induced transformation in zirconium based bulk metallic glass. Journal of Non-Crystalline Solids, 2016, 432, 237-245.	3.1	10
65	Amorphous Coatings and Surfaces on Structural Materials. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 1-46.	12.3	73
66	Tensile behavior of laser treated Fe-Si-B metallic glass. Journal of Applied Physics, 2015, 118, .	2.5	12
67	Laser Machining of Structural Alumina: Influence of Moving Laser Beam on the Evolution of Surface Topography. International Journal of Applied Ceramic Technology, 2015, 12, 665-678.	2.1	10
68	Modeling and experimental approaches of laser system for lasik eye surgery. , 2015, , .		0
69	Surface topography in three-dimensional laser machining of structural alumina. Journal of Manufacturing Processes, 2015, 19, 49-58.	5.9	25
70	Dynamic crystallization during non-isothermal laser treatment of Fe–Si–B metallic glass. Journal Physics D: Applied Physics, 2015, 48, 495501.	2.8	25
71	Effect of Iron on the Enhancement of Magnetic Properties for Cobalt-Based Soft Magnetic Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1019-1023.	2.2	17
72	Multiphysics Theoretical Evaluation of Thermal Stresses in Laser Machined Structural Alumina. Lasers in Manufacturing and Materials Processing, 2015, 2, 1-23.	2.2	20

#	Article	IF	CITATIONS
73	Influence of niobium on laser de-vitrification of Fe–Si–B based amorphous magnetic alloys. Journal of Non-Crystalline Solids, 2015, 428, 75-81.	3.1	22
74	Directly deposited MoS ₂ thin film electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24049-24054.	10.3	140
75	Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance. Applied Surface Science, 2015, 328, 205-214.	6.1	52
76	Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Materials Letters, 2015, 142, 122-125.	2.6	117
77	Laser surface modification of AZ31B Mg alloy for bio-wettability. Journal of Biomaterials Applications, 2015, 29, 915-928.	2.4	49
78	Laser assisted high entropy alloy coating on aluminum: Microstructural evolution. Journal of Applied Physics, 2014, 116, .	2.5	58
79	Synthesis of Al0.5CoCrCuFeNi and Al0.5CoCrFeMnNi High-Entropy Alloys by Laser Melting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1603-1607.	2.1	12
80	Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion. Journal of Alloys and Compounds, 2014, 604, 266-272.	5.5	28
81	Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2998-3009.	2.2	23
82	Laser Induced Nitrogen Enhanced Titanium Surfaces for Improved Osseo-Integration. Annals of Biomedical Engineering, 2014, 42, 50-61.	2.5	24
83	Laser surface alloying of molybdenum on aluminum for enhanced wear resistance. Surface and Coatings Technology, 2014, 258, 337-342.	4.8	35
84	Laser patterning of Fe–Si–B amorphous ribbons in magnetic field. Applied Physics A: Materials Science and Processing, 2014, 117, 1241-1247.	2.3	13
85	Structural Relaxation and Nanocrystallization-Induced Laser Surface Hardening of Fe-Based Bulk Amorphous Alloys. Jom, 2014, 66, 1080-1087.	1.9	14
86	lmproved soft magnetic properties by laser de-vitrification of Fe–Si–B amorphous magnetic alloys. Materials Letters, 2014, 122, 155-158.	2.6	16
87	Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti–6Al–4V biomaterial in physiological solution. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 153-164.	3.1	22
88	MC3T3-E1 osteoblast adhesion to laser induced hydroxyapatite coating on Ti alloy. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 81-93.	0.1	0
89	One-dimensional multipulse laser machining of structural alumina: evolution of surface topography. International Journal of Advanced Manufacturing Technology, 2013, 68, 69-83.	3.0	62
90	Laser surface modification of alumina: Integrated computational and experimental analysis. Ceramics International, 2013, 39, 6207-6213.	4.8	12

#	Article	IF	CITATIONS
91	Macro- and Microstructural Studies of Laser-Processed WE43 (Mg-Y-Nd) Magnesium Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 1190-1200.	2.1	13
92	Laser in-situ synthesis of TiB2–Al composite coating for improved wear performance. Surface and Coatings Technology, 2013, 236, 200-206.	4.8	14
93	Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: Microstructure and mechanical properties. Applied Surface Science, 2013, 282, 914-922.	6.1	64
94	Wettability of nanotextured metallic glass surfaces. Scripta Materialia, 2013, 69, 732-735.	5.2	31
95	Computational modeling and experimental based parametric study of multi-track laser processing on alumina. Optics and Laser Technology, 2013, 48, 570-579.	4.6	9
96	Dilution of molybdenum on aluminum during laser surface alloying. Journal of Alloys and Compounds, 2013, 570, 133-143.	5.5	21
97	Laser deposited biocompatible Ca–P coatings on Ti–6Al–4V: Microstructural evolution and thermal modeling. Materials Science and Engineering C, 2013, 33, 165-173.	7.3	27
98	Synthesis of TiB2–TiC/Fe nano-composite coating by laser surface engineering. Optics and Laser Technology, 2013, 45, 647-653.	4.6	45
99	Design and optimization of microstructure for improved corrosion resistance in laser surface alloyed aluminum with molybdenum. International Journal of Precision Engineering and Manufacturing, 2013, 14, 1421-1432.	2.2	9
100	Laser assisted crystallization of ferromagnetic amorphous ribbons: A multimodal characterization and thermal model study. Journal of Applied Physics, 2013, 114, .	2.5	25
101	Nanocrystallization in spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloy. Journal of Applied Physics, 2013, 114, .	2.5	18
102	Multiscale laser materials engineering: energy-efficient processing and materials performance. Nanomaterials and Energy, 2013, 2, 64-70.	0.2	2
103	PULSED LASER SURFACE MODIFICATION OF AZ31B WITH Al-Si . Surface Review and Letters, 2012, 19, 1250015.	1.1	Ο
104	Stress-induced selective nano-crystallization in laser-processed amorphous Fe–Si–B alloys. Philosophical Magazine Letters, 2012, 92, 617-624.	1.2	29
105	Evolution of surface topography in one-dimensional laser machining of structural alumina. Journal of the European Ceramic Society, 2012, 32, 4205-4218.	5.7	56
106	In Situ Laser Synthesis of Fe-Based Amorphous Matrix Composite Coating on Structural Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4957-4966.	2.2	45
107	Densification Behavior and Wear Response of Spark Plasma Sintered Ironâ€Based Bulk Amorphous Alloys. Advanced Engineering Materials, 2012, 14, 400-407.	3.5	20
108	Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance. Jom, 2012, 64, 709-715.	1.9	26

#	Article	IF	CITATIONS
109	Laser-induced thermal and spatial nanocrystallization of amorphous Fe–Si–B alloy. Scripta Materialia, 2012, 66, 538-541.	5.2	39
110	Improved corrosion and wear resistance of Mg alloys via laser surface modification of Al on AZ31B. Surface and Coatings Technology, 2012, 206, 2308-2315.	4.8	56
111	Absorptivity Transition in the 1.06â€fμm Wavelength Laser Machining of Structural Ceramics. International Journal of Applied Ceramic Technology, 2011, 8, 127-139.	2.1	18
112	Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti–6Al–4V. Materials Science and Engineering C, 2011, 31, 1643-1652.	7.3	29
113	Wear behavior of plasma electrolytic oxidation (PEO) and hybrid coatings of PEO and laser on MRI 230D magnesium alloy. Wear, 2011, 271, 1987-1997.	3.1	49
114	Laser surface modification for synthesis of textured bioactive and biocompatible Ca–P coatings on Ti–6Al–4V. Journal of Materials Science: Materials in Medicine, 2011, 22, 1393-1406.	3.6	18
115	Electrochemical and mechanical behavior of laser processed Ti–6Al–4V surface in Ringer's physiological solution. Journal of Materials Science: Materials in Medicine, 2011, 22, 1787-1796.	3.6	15
116	Periodically Laser Patterned FeBSi Amorphous Ribbons: Phase Evolution and Mechanical Behavior. Advanced Engineering Materials, 2011, 13, 955-960.	3.5	10
117	Surface Engineering for Amorphous-, Nanocrystalline-, and Bio-materials. Jom, 2010, 62, 64-64.	1.9	0
118	Laser process effects on physical texture and wetting in implantable Ti-alloys. Jom, 2010, 62, 76-83.	1.9	7
119	Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility. Journal of Materials Science: Materials in Medicine, 2010, 21, 2187-2200.	3.6	25
120	Effects of SiO2 substitution on wettability of laser deposited Ca-P biocoating on Ti-6Al-4V. Journal of Materials Science: Materials in Medicine, 2010, 21, 2511-2521.	3.6	19
121	Fractal Approach to Hierarchically Evolved Laser Processed CaP Coatings. Advanced Engineering Materials, 2010, 12, 517-521.	3.5	1
122	Wetting effects on <i>in vitro</i> bioactivity and <i>in vitro</i> biocompatibility of laser micro-textured Ca-P coating. Biofabrication, 2010, 2, 025001.	7.1	26
123	Wetting behaviour of laser synthetic surface microtextures on Ti–6Al–4V for bioapplication. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1863-1889.	3.4	61
124	Physical Effects of Multipass Twoâ€Dimensional Laser Machining of Structural Ceramics. Advanced Engineering Materials, 2009, 11, 579-585.	3.5	21
125	Faceted Surface Grain Morphology of Rapidly Solidified Alumina: Characterization and Potential Applications. Advanced Engineering Materials, 2009, 11, 1030-1033.	3.5	0
126	Differences in physical phenomena governing laser machining of structural ceramics. Ceramics International, 2009, 35, 2093-2097.	4.8	65

#	Article	IF	CITATIONS
127	Rapid surface microstructuring of porous alumina ceramic using continuous wave Nd:YAG laser. Journal of Materials Processing Technology, 2009, 209, 4744-4749.	6.3	15
128	Articulation of surfaces for bio-applications. Jom, 2009, 61, 52-52.	1.9	15
129	Computational approach to photonic drilling of silicon carbide. International Journal of Advanced Manufacturing Technology, 2009, 45, 704-713.	3.0	34
130	Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes. Applied Physics A: Materials Science and Processing, 2009, 94, 861-870.	2.3	24
131	Inâ€situ surface absorptivity prediction during 1.06 μm wavelength laser low aspect ratio machining of structural ceramics. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1433-1439.	1.8	25
132	An integrated computational approach to single-dimensional laser machining of magnesia. Optics and Lasers in Engineering, 2009, 47, 570-577.	3.8	21
133	Laser surface cladding of MRI 153M magnesium alloy with (Al+Al2O3). Surface and Coatings Technology, 2009, 203, 2292-2299.	4.8	60
134	Laser machining of structural ceramics—A review. Journal of the European Ceramic Society, 2009, 29, 969-993.	5.7	400
135	Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering Reports, 2009, 66, 1-70.	31.8	559
136	Pulsed laser surface treatment of magnesium alloy: Correlation between thermal model and experimental observations. Journal of Materials Processing Technology, 2009, 209, 5060-5067.	6.3	18
137	Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomaterialia, 2009, 5, 2763-2772.	8.3	71
138	Microstructure and properties of spark plasma sintered Fe–Cr–Mo–Y–B–C bulk metallic glass. Journal of Non-Crystalline Solids, 2009, 355, 2179-2182.	3.1	51
139	A thermal model for laser interaction with thick dielectric film on metallic substrate: Application to Ca–P layer on Ti alloy. Journal of Alloys and Compounds, 2009, 487, 499-503.	5.5	3
140	Fabrication and evaluation of a pulse laser-induced Ca–P coating on a Ti alloy for bioapplication. Biomedical Materials (Bristol), 2009, 4, 015009.	3.3	28
141	Pulsed laser synthesis of ceramic–metal composite coating on steel. Applied Surface Science, 2008, 255, 3188-3194.	6.1	25
142	Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel. Surface and Coatings Technology, 2008, 202, 2623-2631.	4.8	121
143	Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surface and Coatings Technology, 2008, 202, 3187-3198.	4.8	95
144	Laser surface processing of Ti6Al4V in gaseous nitrogen: corrosion performance in physiological solution. Journal of Materials Science: Materials in Medicine, 2008, 19, 1363-1369.	3.6	14

#	Article	IF	CITATIONS
145	Multilevel residual stress evaluation in laser surface modified alumina ceramic. Applied Physics A: Materials Science and Processing, 2008, 90, 493-499.	2.3	9
146	Process optimization in laser surface structuring of alumina. Journal of Materials Processing Technology, 2008, 203, 498-504.	6.3	21
147	Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating. Acta Materialia, 2008, 56, 5984-5994.	7.9	107
148	Effect of microstructural evolution on wettability of laser coated calcium phosphate on titanium alloy. Materials Science and Engineering C, 2008, 28, 1560-1564.	7.3	14
149	Computational predictions in single-dimensional laser machining of alumina. International Journal of Machine Tools and Manufacture, 2008, 48, 1345-1353.	13.4	65
150	Controlled Evolution of Morphology and Microstructure in Laser Interferenceâ€ S tructured Zirconia. Journal of the American Ceramic Society, 2008, 91, 2138-2142.	3.8	16
151	Phase constituents and microstructure of laser synthesized TiB2–TiC reinforced composite coating on steel. Scripta Materialia, 2008, 59, 1147-1150.	5.2	62
152	Characterization of microstructure in laser surface modified alumina ceramic. Materials Characterization, 2008, 59, 700-707.	4.4	35
153	Laser beam operation mode dependent grain morphology of alumina. Journal of Applied Physics, 2007, 102, 123105.	2.5	12
154	Temporally evolved recoil pressure driven melt infiltration during laser surface modifications of porous alumina ceramic. Journal of Applied Physics, 2007, 101, 054911.	2.5	30
155	Laser surface treatment for porous and textured Ca–P bio-ceramic coating on Ti–6Al–4V. Biomedical Materials (Bristol), 2007, 2, 274-281.	3.3	33
156	State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Materialia, 2007, 55, 1203-1214.	7.9	110
157	Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007, 3, 944-951.	8.3	183
158	Laser cleaning and dressing of vitrified grinding wheels. Journal of Materials Processing Technology, 2007, 185, 17-23.	6.3	37
159	Computational prediction of grain size during rapid laser surface modification of Al–O ceramic. Physica Status Solidi - Rapid Research Letters, 2007, 1, R4-R6.	2.4	5
160	Corrosion degradation and prevention by surface modification of biometallic materials. Journal of Materials Science: Materials in Medicine, 2007, 18, 725-751.	3.6	201
161	The laser surface modification of advanced ceramics: A modeling approach. Jom, 2007, 59, 35-38.	1.9	5
162	Laser Surface Modification of Ti—6Al—4V: Wear and Corrosion Characterization in Simulated Biofluid. Journal of Biomaterials Applications, 2006, 21, 49-73.	2.4	75

#	Article	IF	CITATIONS
163	Microgrinding hypereutectoid steels using laser-modified corundum abrasive materials. International Journal of Machining and Machinability of Materials, 2006, 1, 12.	0.1	4
164	Evolution of Surface Morphology in Laser-Dressed Alumina Grinding Wheel Material. International Journal of Applied Ceramic Technology, 2006, 3, 375-381.	2.1	15
165	Laser induced hierarchical calcium phosphate structures. Acta Biomaterialia, 2006, 2, 677-683.	8.3	49
166	Laser synthesis of palladium–alumina composite membranes for production of high purity hydrogen from gasification. Applied Surface Science, 2006, 253, 1247-1254.	6.1	11
167	Laser surface cladding of Fe–B–C, Fe–B–Si and Fe–BC–Si–Al–C on plain carbon steel. Surface ar Coatings Technology, 2006, 201, 434-440.	nd _{4.8}	90
168	Laser Dressing of Alumina Grinding Wheels. Journal of Materials Engineering and Performance, 2006, 15, 178-181.	2.5	14
169	Laser induced multi-scale textured zirconia coating on Ti-6Al-4V. Journal of Materials Science: Materials in Medicine, 2006, 17, 565-572.	3.6	15
170	Surface design and effects in biological environment. Jom, 2006, 58, 51-51.	1.9	0
171	High-density-infrared (HDI) treatment of mineral processing equipment for enhanced wear resistance. Minerals Engineering, 2006, 19, 190-196.	4.3	3
172	Prediction of solidification microstructures during laser dressing of alumina-based grinding wheel material. Journal Physics D: Applied Physics, 2006, 39, 1642-1649.	2.8	32
173	Molecular modeling of metastable FeB49 phase evolution in laser surface engineered coating. Journal of Applied Physics, 2006, 99, 044904.	2.5	8
174	Morphological modification in laser-dressed alumina grinding wheel material for microscale grinding. Journal of Materials Processing Technology, 2005, 170, 1-10.	6.3	40
175	Observation of exothermic reaction during laser-assisted iron oxide coating on aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 404-413.	5.6	3
176	Thermal transitions in Fe–Ti–Cr–C quaternary system used as precursor during laser in situ carbide coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 399, 318-325.	5.6	6
177	Nanocoatings for engine application. Surface and Coatings Technology, 2005, 194, 58-67.	4.8	103
178	Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceramics International, 2005, 31, 621-629.	4.8	36
179	The application of laser-induced multi-scale surface texturing. Jom, 2005, 57, 46-50.	1.9	144
180	Phase evolution during laser in-situ carbide coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 797-803.	2.2	1

#	Article	IF	CITATIONS
181	Phase evolution during laser In-Situ carbide coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 797-803.	2.2	16
182	Tribology of laser modified surface of stainless steel in physiological solution. Journal of Materials Science, 2005, 40, 5619-5626.	3.7	15
183	Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering. Journal of Biomaterials Applications, 2005, 20, 5-50.	2.4	370
184	Instrumented indentation probing of laser surface-refined cast Al alloy. Journal of Materials Research, 2004, 19, 202-207.	2.6	10
185	Thermography during laser surface melting of cast aluminium alloy. Materials Science and Technology, 2004, 20, 1609-1614.	1.6	6
186	Surface engineering via nanotechnology: Clusters to components. Jom, 2004, 56, 34-35.	1.9	85
187	Surface engineering of aluminum alloys for automotive engine applications. Jom, 2004, 56, 46-48.	1.9	99
188	Instrumented Indentation Characterization of Laser-Induced Fe3O4/Al Composite Coating. Advanced Engineering Materials, 2003, 5, 246-251.	3.5	2
189	Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 342, 183-191.	5.6	28
190	Micromechanical properties of a laser-induced iron oxide–aluminum matrix composite coating. Journal of Materials Research, 2003, 18, 833-839.	2.6	11
191	Carbide Composite Coating On Steel By Laser Surface Engineering. Microscopy and Microanalysis, 2003, 9, 688-689.	0.4	0
192	Microstructure Evolution in Laser-Dressing of Alumina Grinding Wheels. Microscopy and Microanalysis, 2003, 9, 640-641.	0.4	0
193	Microstructural and tribological characterization of laser surface engineered VC coating on tool/die steel. Materials and Manufacturing Processes, 2002, 17, 1-12.	4.7	10
194	Nanostructured materials and the role of surface engineering. Jom, 2002, 54, 20-21.	1.9	2
195	The laser-induced combustion synthesis of iron-oxide nanocomposite coatings on aluminum. Jom, 2002, 54, 39-41.	1.9	11
196	Laser surface-engineered vanadium carbide coating for extended die life. Journal of Materials Processing Technology, 2002, 124, 105-112.	6.3	39
197	Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys. Applied Surface Science, 2002, 199, 222-233.	6.1	53
198	Mechanical characterisation of interface in laser surface engineered composite TiB2coating on steel. Surface Engineering, 2001, 17, 66-70.	2.2	3

#	Article	IF	CITATIONS
199	Elastic Modulus of Pulse Electrode Surface Deposited Composite Boride Coating Using Nanoindentation. Surface Engineering, 2001, 17, 495-497.	2.2	4
200	The domain of functional coatings and beyond. Jom, 2001, 53, 43-43.	1.9	1
201	The laser-assisted iron oxide coating of cast Al auto engines. Jom, 2001, 53, 44-46.	1.9	7
202	Refractory ceramic coatings: processes, systems and wettability/adhesion. Surface and Interface Analysis, 2001, 31, 659-672.	1.8	30
203	Wear resistance of a laser alloyed A-356 aluminum/WC composite. Wear, 2001, 251, 1459-1468.	3.1	24
204	Mechanism of high temperature oxidation of laser surface engineered TiC/Al alloy â€~composite' coating on 6061 aluminium alloy. Materials Science and Technology, 2001, 17, 1061-1068.	1.6	12
205	Interfacial strength of laser surface engineered TiC coating on 6061 Al using four-point bend test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 289, 34-40.	5.6	37
206	Neural networks in studies on oxidation behavior of laser surface engineered composite boride coatings. Applied Surface Science, 2000, 161, 131-138.	6.1	12
207	Laser surface engineered TiC coating on 6061 Al alloy: microstructure and wear. Applied Surface Science, 2000, 153, 65-78.	6.1	97
208	Comparative wear in titanium diboride coatings on steel using high energy density processes. Wear, 2000, 240, 144-151.	3.1	45
209	Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 461-473.	2.2	35
210	Non-vacuum laser deposition of buffer layers for coated conductors. Thin Solid Films, 1999, 340, 77-86.	1.8	0
211	Formation of a wear resistant surface on Al by laser aided in-situ synthesis of MoSi2. Journal of Materials Processing Technology, 1999, 88, 169-179.	6.3	15
212	Pulsed Electrode Surfacing of Steel with TiC Coating: Microstructure and Wear Properties. Journal of Materials Engineering and Performance, 1999, 8, 479-486.	2.5	32
213	Refractory ceramic-composite coatings via laser surface engineering. Jom, 1999, 51, 19-21.	1.9	4
214	Laser surface engineering of steel for hard refractory ceramic composite coating. International Journal of Refractory Metals and Hard Materials, 1999, 17, 283-293.	3.8	79
215	Synthesis of Boride Coating on Steel using High Energy Density Processes. Materials Characterization, 1999, 42, 31-44.	4.4	63
216	Evolution of interface in pulsed electrode deposited titanium diboride on copper and steel. Surface Engineering, 1999, 15, 27-32.	2.2	26

#	Article	IF	CITATIONS
217	Pulse electrode deposition of superhard boride coatings on ferrous alloy. Surface and Coatings Technology, 1998, 106, 242-250.	4.8	47
218	Pulse laser processing of a SiC/Al-alloy metal matrix composite. Journal of Materials Research, 1991, 6, 514-529.	2.6	46
219	Fusion Zone Structures in Laser Welded Al-SiC Composites. Journal of Laser Applications, 1991, 3, 35-39.	1.7	11
220	Laser processing of a SiC/Alâ€alloy metal matrix composite. Journal of Applied Physics, 1989, 65, 5072-5077.	2.5	49
221	Thermal effects associated with stress-induced martensitic transformation in a Tiî—,Ni alloy. Materials Science and Engineering, 1985, 74, 75-84.	0.1	50
222	Damage in aluminum, zinc and tin from a nanosecond electric pulse discharge. Materials Science and Engineering, 1984, 64, 247-254.	0.1	1
223	Laser Machining of Advanced Materials. , 0, , .		15
224	Thermokineticallyâ€driven Microstructural Evolution in Laserâ€based Directed Energy Deposited CoCrMo Biomedical Alloy. Advanced Engineering Materials, 0, , .	3.5	4