Miguel Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282868/publications.pdf

Version: 2024-02-01

58 5,469 24 57
papers citations h-index g-index

58 58 58 11790 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Reports, 2022, 38, 110221.	6.4	13
2	Lead Optimization of 3,5-Disubstituted-7-Azaindoles for the Treatment of Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2021, 64, 9404-9430.	6.4	6
3	Hit-to-Lead Optimization of Benzoxazepinoindazoles As Human African Trypanosomiasis Therapeutics. Journal of Medicinal Chemistry, 2020, 63, 2527-2546.	6.4	11
4	Selectivity and Physicochemical Optimization of Repurposed Pyrazolo[1,5- <i>b</i>)pyridazines for the Treatment of Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2020, 63, 756-783.	6.4	10
5	Medicinal Chemistry Optimization of a Diaminopurine Chemotype: Toward a Lead for <i>Trypanosoma brucei</i> Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 9912-9927.	6.4	5
6	Structure–property studies of an imidazoquinoline chemotype with antitrypanosomal activity. RSC Medicinal Chemistry, 2020, 11, 950-959.	3.9	3
7	Evaluation of a class of isatinoids identified from a high-throughput screen of human kinase inhibitors as anti-Sleeping Sickness agents. PLoS Neglected Tropical Diseases, 2019, 13, e0007129.	3.0	4
8	SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Reports, 2019, 20, e48029.	4.5	15
9	Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Molecular Biology of the Cell, 2018, 29, 1100-1110.	2.1	5
10	Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 203-212.	3.4	27
11	From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis. ACS Infectious Diseases, 2017, 3, 225-236.	3.8	19
12	Novel 1,2-dihydroquinazolin-2-ones: Design, synthesis, and biological evaluation against Trypanosoma brucei. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3629-3635.	2.2	5
13	Identification of "Preferred―Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?. ACS Infectious Diseases, 2016, 2, 180-186.	3.8	28
14	The AMPK $\hat{1}\pm 1$ Pathway Positively Regulates the Developmental Transition from Proliferation to Quiescence in Trypanosoma brucei. Cell Reports, 2016, 17, 660-670.	6.4	44
15	Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Research, 2016, 44, 10554-10570.	14.5	23
16	The protozoan nucleus. Molecular and Biochemical Parasitology, 2016, 209, 76-87.	1.1	5
17	Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models. PLoS Pathogens, 2016, 12, e1005851.	4.7	16
18	Localization of serum resistance-associated protein in <i>Trypanosoma brucei rhodesiense</i> and transgenic <i>Trypanosoma brucei brucei</i> . Cellular Microbiology, 2015, 17, 1523-1535.	2.1	13

#	Article	IF	CITATIONS
19	Molecular evidence of a Trypanosoma brucei gambiense sylvatic cycle in the human african trypanosomiasis foci of Equatorial Guinea. Frontiers in Microbiology, 2015, 6, 765.	3.5	20
20	New Compound Sets Identified from High Throughput Phenotypic Screening Against Three Kinetoplastid Parasites: An Open Resource. Scientific Reports, 2015, 5, 8771.	3.3	204
21	High-Throughput Screening Platform for Natural Product–Based Drug Discovery Against 3 Neglected Tropical Diseases: Human African Trypanosomiasis, Leishmaniasis, and Chagas Disease. Journal of Biomolecular Screening, 2015, 20, 82-91.	2.6	70
22	Identification and Characterization of Hundreds of Potent and Selective Inhibitors of Trypanosoma brucei Growth from a Kinase-Targeted Library Screening Campaign. PLoS Neglected Tropical Diseases, 2014, 8, e3253.	3.0	47
23	SUMOylation by the E3 Ligase TbSIZ1/PIAS1 Positively Regulates VSG Expression in Trypanosoma brucei. PLoS Pathogens, 2014, 10, e1004545.	4.7	48
24	Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades. Parasites and Vectors, 2014, 7, 31.	2.5	10
25	Establishment of a Structure–Activity Relationship of 1 <i>H</i> lmidazo[4,5- <i>c</i>]quinoline-Based Kinase Inhibitor NVP-BEZ235 as a Lead for African Sleeping Sickness. Journal of Medicinal Chemistry, 2014, 57, 4834-4848.	6.4	35
26	Target of rapamycin (TOR) kinase in <i>Trypanosoma brucei</i> : an extended family. Biochemical Society Transactions, 2013, 41, 934-938.	3.4	26
27	Trypanosoma brucei gambiense Adaptation to Different Mammalian Sera Is Associated with VSG Expression Site Plasticity. PLoS ONE, 2013, 8, e85072.	2.5	8
28	Third target of rapamycin complex negatively regulates development of quiescence in <i>Trypanosoma brucei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14399-14404.	7.1	70
29	Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei. DNA Repair, 2012, 11, 986-995.	2.8	21
30	Trypanosomes lacking uracil-DNA glycosylase are hypersensitive to antifolates and present a mutator phenotype. International Journal of Biochemistry and Cell Biology, 2012, 44, 1555-1568.	2.8	18
31	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
32	NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions. PLoS Biology, 2012, 10, e1001287.	5.6	105
33	Diamine and aminoalcohol derivatives active against Trypanosoma brucei. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 440-443.	2.2	8
34	Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: A proof of mechanism for trypanosomatid chemotherapy. Journal of Controlled Release, 2012, 161, 835-842.	9.9	24
35	Role of RPB7 in RNA pol I transcription in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2011, 180, 43-44.	1.1	2
36	Autophagy in protists. Autophagy, 2011, 7, 127-158.	9.1	148

#	Article	IF	Citations
37	The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing. PLoS Neglected Tropical Diseases, 2011, 5, e1297.	3.0	70
38	Target of Rapamycin (TOR)-like 1 Kinase Is Involved in the Control of Polyphosphate Levels and Acidocalcisome Maintenance in Trypanosoma brucei. Journal of Biological Chemistry, 2010, 285, 24131-24140.	3.4	43
39	Cohesin regulates <i>VSG</i> monoallelic expression in trypanosomes. Journal of Cell Biology, 2009, 186, 243-254.	5.2	73
40	Trypanosome TOR as a major regulator of cell growth and autophagy. Autophagy, 2009, 5, 256-258.	9.1	30
41	RNA pol II subunit RPB7 is required for RNA pol lâ€mediated transcription in <i>Trypanosoma brucei</i> . EMBO Reports, 2009, 10, 252-257.	4.5	16
42	Trypanosome TOR complex 2 functions in cytokinesis. Cell Cycle, 2009, 8, 697-699.	2.6	19
43	Cohesin regulates <i>VSG < li>monoallelic expression in trypanosomes. Journal of Experimental Medicine, 2009, 206, i17-i17.</i>	8.5	0
44	Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14579-14584.	7.1	121
45	Nuclear repositioning of the VSG promoter during developmental silencing in Trypanosoma brucei. Journal of Cell Biology, 2007, 176, 133-139.	5.2	71
46	Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends in Microbiology, 2007, 15, 263-270.	7.7	45
47	The identification of circular extrachromosomal DNA in the nuclear genome of Trypanosoma brucei. Molecular Microbiology, 2003, 47, 277-289.	2.5	18
48	A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature, 2001, 414, 759-763.	27.8	304
49	New tubulins in protozoal parasites. Current Biology, 2000, 10, R258-R259.	3.9	47
50	The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Molecular and Biochemical Parasitology, 2000, 111, 261-273.	1.1	73
51	Conditional expression of glycosylphosphatidylinositol phospholipase C in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1999, 103, 35-48.	1.1	19
52	Trypanosoma brucei variant surface glycoprotein regulation involves coupled activation/inactivation and chromatin remodeling of expression sites. EMBO Journal, 1999, 18, 2265-2272.	7.8	76
53	Regulation of vsg expression site transcription and switching in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1998, 91, 77-91.	1.1	97
54	In situ analysis of a variant surface glycoprotein expression-site promoter region in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1998, 94, 53-66.	1.1	40

#	Article	IF	CITATIONS
55	Targeted disruption of expression site-associated gene-1 in bloodstream-form Trypanosoma brucei. Molecular and Biochemical Parasitology, 1996, 81, 65-79.	1.1	24
56	Location in the source chromosome of the 180-kb minichromosome of Leishmania major and characterization of the novel junction. Molecular and Biochemical Parasitology, 1995, 71, 153-161.	1.1	11
57	Inverted repeat structure and homologous sequences in the LD1 amplicons of Leishmania spp Molecular and Biochemical Parasitology, 1994, 68, 69-80.	1.1	18
58	Dynamics and size polymorphisms of minichromosomes in Leishmania major LV-561 cloned lines. Molecular and Biochemical Parasitology, 1992, 55, 65-74.	1.1	16