Dmitri Golberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281626/publications.pdf

Version: 2024-02-01

764 62,163 131 214 papers citations h-index g-index

804 804 804 44191

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Boron Nitride Nanotubes and Nanosheets. ACS Nano, 2010, 4, 2979-2993.	14.6	1,981
2	Largeâ€Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials, 2009, 21, 2889-2893.	21.0	1,496
3	ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, 56, 175-287.	32.8	1,134
4	Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 2016, 45, 3989-4012.	38.1	936
5	Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 2413-2432.	21.0	886
6	"White Graphenes― Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Letters, 2010, 10, 5049-5055.	9.1	723
7	Nano boron nitride flatland. Chemical Society Reviews, 2014, 43, 934-959.	38.1	638
8	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	12.8	606
9	Inorganic semiconductor nanostructures and their field-emission applications. Journal of Materials Chemistry, 2008, 18, 509-522.	6.7	586
10	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	3.3	541
11	Singleâ€Crystalline ZnS Nanobelts as Ultravioletâ€Light Sensors. Advanced Materials, 2009, 21, 2034-2039.	21.0	537
12	Polyhedral Oligosilsesquioxaneâ€Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Advanced Functional Materials, 2013, 23, 1824-1831.	14.9	529
13	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 2005, 17, 1648-1652.	21.0	512
14	Nâ€Doped Grapheneâ€SnO ₂ Sandwich Paper for Highâ€Performance Lithiumâ€ion Batteries. Advanced Functional Materials, 2012, 22, 2682-2690.	14.9	506
15	A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors, 2009, 9, 6504-6529.	3.8	491
16	Ultrathin SnSe ₂ Flakes Grown by Chemical Vapor Deposition for Highâ€Performance Photodetectors. Advanced Materials, 2015, 27, 8035-8041.	21.0	460
17	Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Advanced Functional Materials, 2009, 19, 1857-1862.	14.9	457
18	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	10.0	405

#	Article	IF	Citations
19	Boron nitride nanotubes. Materials Science and Engineering Reports, 2010, 70, 92-111.	31.8	400
20	Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano, 2014, 8, 6123-6130.	14.6	374
21	Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015, 1, 60-66.	4.3	372
22	Nanotubes in boron nitride laser heated at high pressure. Applied Physics Letters, 1996, 69, 2045-2047.	3.3	362
23	Centimeterâ€Long V ₂ O ₅ Nanowires: From Synthesis to Fieldâ€Emission, Electrochemical, Electrical Transport, and Photoconductive Properties. Advanced Materials, 2010, 22, 2547-2552.	21.0	359
24	Octahedral boron nitride fullerenes formed by electron beam irradiation. Applied Physics Letters, 1998, 73, 2441-2443.	3.3	357
25	One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chemical Society Reviews, 2011, 40, 2986.	38.1	352
26	Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy, 2016, 26, 313-323.	16.0	345
27	Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chemical Physics Letters, 1999, 308, 337-342.	2.6	344
28	Low-dimensional boron nitride nanomaterials. Materials Today, 2012, 15, 256-265.	14.2	343
29	Singleâ€Crystalline CdS Nanobelts for Excellent Fieldâ€Emitters and Ultrahigh Quantumâ€Efficiency Photodetectors. Advanced Materials, 2010, 22, 3161-3165.	21.0	342
30	One-dimensional CdS nanostructures: synthesis, properties, and applications. Nanoscale, 2010, 2, 168.	5.6	317
31	Recent Developments in Oneâ€Dimensional Inorganic Nanostructures for Photodetectors. Advanced Functional Materials, 2010, 20, 4233-4248.	14.9	314
32	Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. Nano Letters, 2016, 16, 2054-2060.	9.1	314
33	ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 190-223.	12.3	306
34	Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets. Journal of Physical Chemistry B, 2006, 110, 15146-15151.	2.6	305
35	Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage. Nano Letters, 2014, 14, 1164-1171.	9.1	304
36	Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons. Advanced Functional Materials, 2003, 13, 493-496.	14.9	301

#	Article	lF	CITATIONS
37	Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Materialia, 2001, 44, 1561-1565.	5.2	300
38	Fabrication of High-Quality In ₂ Se ₃ Nanowire Arrays toward High-Performance Visible-Light Photodetectors. ACS Nano, 2010, 4, 1596-1602.	14.6	289
39	New Ultraviolet Photodetector Based on Individual Nb ₂ O ₅ Nanobelts. Advanced Functional Materials, 2011, 21, 3907-3915.	14.9	285
40	Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes. Journal of the American Chemical Society, 2002, 124, 14550-14551.	13.7	282
41	Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. Journal of Materials Science and Technology, 2015, 31, 589-598.	10.7	282
42	Boron Nitride Porous Microbelts for Hydrogen Storage. ACS Nano, 2013, 7, 1558-1565.	14.6	277
43	Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Communications, 2005, 135, 67-70.	1.9	275
44	Boron Nitride Nanosheet Coatings with Controllable Water Repellency. ACS Nano, 2011, 5, 6507-6515.	14.6	275
45	Lowâ€Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnOâ€SnO ₂ Heterojunction Nanofibers. Advanced Materials, 2013, 25, 4625-4630.	21.0	275
46	Cableâ€Type Supercapacitors of Threeâ€Dimensional Cotton Thread Based Multiâ€Grade Nanostructures for Wearable Energy Storage. Advanced Materials, 2013, 25, 4925-4931.	21.0	267
47	ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Applied Physics Letters, 2004, 84, 3603-3605.	3.3	262
48	Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires. Advanced Materials, 2003, 15, 1294-1296.	21.0	256
49	Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes. ACS Nano, 2011, 5, 2916-2922.	14.6	254
50	Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnSâ€ZnO Heterostructure Nanofilms. Advanced Materials, 2014, 26, 3088-3093.	21.0	251
51	Ultrahighâ€Performance Solarâ€Blind Photodetectors Based on Individual Singleâ€crystalline In ₂ Ge ₂ O ₇ Nanobelts. Advanced Materials, 2010, 22, 5145-5149.	21.0	249
52	Perfectly Dissolved Boron Nitride Nanotubes Due to Polymer Wrapping. Journal of the American Chemical Society, 2005, 127, 15996-15997.	13.7	248
53	Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A, 2018, 6, 11631-11663.	10.3	243
54	Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li–O ₂ Battery. Nano Letters, 2013, 13, 4702-4707.	9.1	241

#	Article	IF	CITATIONS
55	Real-Time <i>In Situ HRTEM-Resolved Resistance Switching of Ag ₂S Nanoscale Ionic Conductor. ACS Nano, 2010, 4, 2515-2522.</i>	14.6	240
56	Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process. Advanced Functional Materials, 2006, 16, 410-416.	14.9	239
57	Ultrafine ZnS Nanobelts as Field Emitters. Advanced Materials, 2007, 19, 2593-2596.	21.0	236
58	Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles. Carbon, 2000, 38, 2017-2027.	10.3	228
59	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
60	Boron nitride nanotubes: functionalization and composites. Journal of Materials Chemistry, 2008, 18, 3900.	6.7	226
61	Template Deformationâ€Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Fieldâ€Emission. Advanced Functional Materials, 2009, 19, 3165-3172.	14.9	224
62	Single-Crystalline Rutile TiO ₂ Hollow Spheres: Room-Temperature Synthesis, Tailored Visible-Light-Extinction, and Effective Scattering Layer for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 19102-19109.	13.7	224
63	Single-Crystalline In2O3 Nanotubes Filled with In. Advanced Materials, 2003, 15, 581-585.	21.0	223
64	ZnO Hollow Spheres with Doubleâ€Yolk Egg Structure for Highâ€Performance Photocatalysts and Photodetectors. Advanced Materials, 2012, 24, 3421-3425.	21.0	223
65	An Efficient Way to Assemble ZnS Nanobelts as Ultravioletâ€Light Sensors with Enhanced Photocurrent and Stability. Advanced Functional Materials, 2010, 20, 500-508.	14.9	222
66	Fluorination and Electrical Conductivity of BN Nanotubes. Journal of the American Chemical Society, 2005, 127, 6552-6553.	13.7	220
67	Field emission from MoO3 nanobelts. Applied Physics Letters, 2002, 81, 5048-5050.	3.3	218
68	Highâ€Performance Blue/Ultravioletâ€Lightâ€Sensitive ZnSeâ€Nanobelt Photodetectors. Advanced Materials, 2009, 21, 5016-5021.	21.0	217
69	"Chemical Blowing―of Thinâ€Walled Bubbles: Highâ€Throughput Fabrication of Largeâ€Area, Fewâ€Layered and C <i></i> i>â€BN Nanosheets. Advanced Materials, 2011, 23, 4072-4076.	BN 21.0	217
70	Oneâ€Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials, 2013, 25, 3017-3037.	21.0	212
71	Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale, 2011, 3, 1120.	5.6	210
72	Pure and doped boron nitride nanotubes. Materials Today, 2007, 10, 30-38.	14.2	204

#	Article	IF	Citations
73	Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy, 2017, 31, 152-159.	16.0	201
74	Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. Advanced Functional Materials, 2008, 18, 3653-3661.	14.9	196
75	Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. Advanced Materials, 2005, 17, 3005-3009.	21.0	195
76	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chemical Society Reviews, 2016, 45, 4042-4073.	38.1	194
77	Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. Nano Letters, 2007, 7, 2146-2151.	9.1	192
78	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Applied Materials & Early; Interfaces, 2017, 9, 43163-43170.	8.0	190
79	Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy, 2012, 1, 91-106.	16.0	189
80	Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. Journal of Physical Chemistry C, 2010, 114, 4340-4344.	3.1	188
81	Synthesis, Structure, and Multiply Enhanced Field-Emission Properties of Branched ZnS Nanotubeâ°'In Nanowire Coreâ^'Shell Heterostructures. ACS Nano, 2008, 2, 1015-1021.	14.6	187
82	Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy, 2020, 67, 104270.	16.0	187
83	Immobilization of Proteins on Boron Nitride Nanotubes. Journal of the American Chemical Society, 2005, 127, 17144-17145.	13.7	185
84	Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Letters, 2008, 8, 2794-2799.	9.1	185
85	Morphology-Dependent Stimulated Emission and Field Emission of Ordered CdS Nanostructure Arrays. ACS Nano, 2009, 3, 949-959.	14.6	185
86	MoS2 nanoflowers and their field-emission properties. Applied Physics Letters, 2003, 82, 1962-1964.	3.3	184
87	<i>In Vitro</i> Investigation of the Cellular Toxicity of Boron Nitride Nanotubes. ACS Nano, 2011, 5, 3800-3810.	14.6	184
88	Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Letters, 2007, 7, 632-637.	9.1	183
89	A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnO dO Heterojunction Nanofiber Arrays. Advanced Functional Materials, 2015, 25, 5885-5894.	14.9	181
90	Direct Synthesis of Bâ^'Câ^'N Single-Walled Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition. Journal of the American Chemical Society, 2006, 128, 6530-6531.	13.7	176

#	Article	IF	Citations
91	Self-Assembled Highly Faceted Wurtzite-Type ZnS Single-Crystalline Nanotubes with Hexagonal Cross-Sections. Advanced Materials, 2005, 17, 1972-1977.	21.0	175
92	N-Doped Graphene–VO ₂ (B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2013, 5, 2708-2714.	8.0	172
93	Covalent Functionalization: Towards Soluble Multiwalled Boron Nitride Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 7932-7935.	13.8	171
94	Phonon characteristics and cathodolumininescence of boron nitride nanotubes. Applied Physics Letters, 2005, 86, 213110.	3.3	171
95	Electrical Transport and Highâ€Performance Photoconductivity in Individual ZrS ₂ Nanobelts. Advanced Materials, 2010, 22, 4151-4156.	21.0	169
96	Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 1952.	10.3	168
97	Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization. Advanced Materials, 2017, 29, 1700695.	21.0	168
98	Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Letters, 2005, 5, 467-472.	9.1	167
99	Chemically Activated Boron Nitride Nanotubes. Chemistry - an Asian Journal, 2009, 4, 1536-1540.	3.3	167
100	Rapid and Direct Conversion of Graphite Crystals into Highâ€Yielding, Goodâ€Quality Graphene by Supercritical Fluid Exfoliation. Chemistry - A European Journal, 2010, 16, 6488-6494.	3.3	167
101	In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. Journal of Materials Chemistry A, 2017, 5, 4335-4342.	10.3	166
102	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. Chemistry of Materials, 2005, 17, 5887-5890.	6.7	164
103	"Protrusions―or "holes―in graphene: which is the better choice for sodium ion storage?. Energy and Environmental Science, 2017, 10, 979-986.	30.8	164
104	Highâ€"Performance Solarâ€Blind Deep Ultraviolet Photodetector Based on Individual Single rystalline Zn ₂ GeO ₄ Nanowire. Advanced Functional Materials, 2016, 26, 704-712.	14.9	163
105	Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy, 2013, 2, 754-763.	16.0	161
106	Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126580.	12.7	160
107	Cobalt(ii,iii) oxide hollow structures: fabrication, properties and applications. Journal of Materials Chemistry, 2012, 22, 23310.	6.7	156
108	Performance-improved Li–O ₂ battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy and Environmental Science, 2014, 7, 1648-1652.	30.8	156

#	Article	IF	CITATIONS
109	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polymer Chemistry, 2012, 3, 962.	3.9	155
110	Tensile Tests on Individual Multiâ€Walled Boron Nitride Nanotubes. Advanced Materials, 2010, 22, 4895-4899.	21.0	154
111	Solvothermal Synthesis, Cathodoluminescence, and Fieldâ€Emission Properties of Pure and Nâ€Doped ZnO Nanobullets. Advanced Functional Materials, 2009, 19, 131-140.	14.9	153
112	Revealing the conversion mechanism of CuO nanowires during lithiation–delithiation by in situ transmission electron microscopy. Chemical Communications, 2012, 48, 4812.	4.1	153
113	Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. Journal of Materials Chemistry, 2011, 21, 40-56.	6.7	151
114	Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations. Nano Letters, 2012, 12, 1898-1904.	9.1	151
115	Characteristics of Boron Nitride Nanotube-Polyaniline Composites. Angewandte Chemie - International Edition, 2005, 44, 7929-7932.	13.8	147
116	Singleâ€Crystalline Sb ₂ Se ₃ Nanowires for Highâ€Performance Field Emitters and Photodetectors. Advanced Materials, 2010, 22, 4530-4533.	21.0	147
117	Synthesis, characterization and field-emission properties of bamboo-like \hat{l}^2 -SiC nanowires. Nanotechnology, 2006, 17, 3468-3472.	2.6	146
118	Biomass-Directed Synthesis of 20 g High-Quality Boron Nitride Nanosheets for Thermoconductive Polymeric Composites. ACS Nano, 2014, 8, 9081-9088.	14.6	145
119	Nanomechanical cleavage of molybdenum disulphide atomic layers. Nature Communications, 2014, 5, 3631.	12.8	144
120	Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Research Letters, 2012, 7, 662.	5.7	143
121	Boron nitride nanotubes/polystyrene composites. Journal of Materials Research, 2006, 21, 2794-2800.	2.6	142
122	Recent advances in solution-processed inorganic nanofilm photodetectors. Chemical Society Reviews, 2014, 43, 1400-1422.	38.1	142
123	Self-Assembly of Two-Dimensional Bimetallic Nickel–Cobalt Phosphate Nanoplates into One-Dimensional Porous Chainlike Architecture for Efficient Oxygen Evolution Reaction. Chemistry of Materials, 2020, 32, 7005-7018.	6.7	142
124	One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Communications, 2014, 5, 4782.	12.8	140
125	Superior Performance of a Li–O ₂ Battery with Metallic RuO ₂ Hollow Spheres as the Carbonâ€Free Cathode. Advanced Energy Materials, 2015, 5, 1500294.	19.5	139
126	Aqueous Noncovalent Functionalization and Controlled Near-Surface Carbon Doping of Multiwalled Boron Nitride Nanotubes. Journal of the American Chemical Society, 2008, 130, 8144-8145.	13.7	137

#	Article	IF	Citations
127	Insights into the structure of BN nanotubes. Applied Physics Letters, 2000, 77, 1979-1981.	3.3	136
128	Oriented Assemblies of ZnS One-Dimensional Nanostructures. Advanced Materials, 2004, 16, 831-834.	21.0	136
129	Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Journal of Colloid and Interface Science, 2011, 359, 261-268.	9.4	135
130	Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 2009, 20, 385707.	2.6	134
131	Liâ€O ₂ Battery Based on Highly Efficient Sbâ€Doped Tin Oxide Supported Ru Nanoparticles. Advanced Materials, 2014, 26, 4659-4664.	21.0	133
132	Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. Journal of Materials Chemistry A, 2016, 4, 1469-1478.	10.3	133
133	Growth and Field Emission of Hierarchical Single-Crystalline Wurtzite AlN Nanoarchitectures. Advanced Materials, 2005, 17, 110-114.	21.0	130
134	CoO octahedral nanocages for high-performance lithium ion batteries. Chemical Communications, 2012, 48, 4878.	4.1	130
135	MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates. Chemical Physics Letters, 2000, 323, 185-191.	2.6	128
136	Highly Thermo-conductive Fluid with Boron Nitride Nanofillers. ACS Nano, 2011, 5, 6571-6577.	14.6	128
137	Plasma-Assisted Interface Engineering of Boron Nitride Nanostructure Films. ACS Nano, 2014, 8, 10631-10639.	14.6	127
138	Epitaxial Heterostructures:Â Side-to-Side Siâ^'ZnS, Siâ^'ZnSe Biaxial Nanowires, and Sandwichlike ZnSâ^'Siâ^'ZnS Triaxial Nanowires. Journal of the American Chemical Society, 2003, 125, 11306-11313.	13.7	124
139	Synthesis of Crystalline Silicon Tubular Nanostructures with ZnS Nanowires as Removable Templates. Angewandte Chemie - International Edition, 2004, 43, 63-66.	13.8	121
140	Needlelike Bicrystalline GaN Nanowires with Excellent Field Emission Properties. Journal of Physical Chemistry B, 2005, 109, 17082-17085.	2.6	121
141	Construction of Polarized Carbon–Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions. ACS Nano, 2018, 12, 4148-4155.	14.6	121
142	Cobalt Hydroxide/Oxide Hexagonal Ring–Graphene Hybrids through Chemical Etching of Metal Hydroxide Platelets by Graphene Oxide: Energy Storage Applications. ACS Nano, 2014, 8, 2755-2765.	14.6	120
143	WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chemical Physics Letters, 2003, 367, 214-218.	2.6	119
144	Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chemical Communications, 2011, 47, 12280.	4.1	119

#	Article	IF	Citations
145	Sizeâ€Tailored ZnO Submicrometer Spheres: Bottomâ€Up Construction, Sizeâ€Related Optical Extinction, and Selective Aniline Trapping. Advanced Materials, 2011, 23, 1865-1870.	21.0	119
146	Oneâ€Step Templateâ€Free Synthesis of Highly Porous Boron Nitride Microsponges for Hydrogen Storage. Advanced Energy Materials, 2014, 4, 1301525.	19.5	117
147	Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. Journal of Physical Chemistry C, 2007, 111, 12673-12676.	3.1	116
148	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO ₂ Nanoparticles by Hydrothermal Treatment. Angewandte Chemie - International Edition, 2016, 55, 3600-3605.	13.8	116
149	Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2009, 113, 13605-13609.	3.1	115
150	Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chemical Physics Letters, 2003, 372, 758-762.	2.6	114
151	Characterization, Cathodoluminescence, and Fieldâ€Emission Properties of Morphologyâ€Tunable CdS Micro/Nanostructures. Advanced Functional Materials, 2009, 19, 2423-2430.	14.9	114
152	Layered Rare-Earth Hydroxides (LRHs) of $(Y < ub > 1a^2 < value = 0.5 $ (Y < sub > 1a^2 < value = 0.5	i>H< <u>\$</u> ub>2	20
153	Nanocable-Aligned ZnS Tetrapod Nanocrystals. Journal of the American Chemical Society, 2003, 125, 16196-16197.	13.7	113
154	Improved Li ⁺ Storage through Homogeneous Nâ€Doping within Highly Branched Tubular Graphitic Foam. Advanced Materials, 2017, 29, 1603692.	21.0	113
155	Ropes of BN multi-walled nanotubes. Solid State Communications, 2000, 116, 1-6.	1.9	112
156	Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology, 2011, 22, 265704.	2.6	112
157	Nanophotonic Switch: Gold-in-Ga ₂ O ₃ Peapod Nanowires. Nano Letters, 2008, 8, 3081-3085.	9.1	111
158	Filling boron nitride nanotubes with metals. Applied Physics A: Materials Science and Processing, 2003, 76, 479-485.	2.3	110
159	Single-Crystalline AlN Nanotubes with Carbon-Layer Coatings on the Outer and Inner Surfaces via a Multiwalled-Carbon-Nanotube-Template-Induced Route. Advanced Materials, 2005, 17, 213-217.	21.0	110
160	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4591-4595.	7.1	110
161	Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. ACS Nano, 2017, 11, 558-568.	14.6	110
162	Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Communications, 2017, 8, 13936.	12.8	109

#	Article	IF	Citations
163	Tailorable nanoarchitecturing of bimetallic nickel–cobalt hydrogen phosphate <i>via</i> the self-weaving of nanotubes for efficient oxygen evolution. Journal of Materials Chemistry A, 2020, 8, 3035-3047.	10.3	109
164	Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon, 2004, 42, 2625-2633.	10.3	108
165	Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes. Advanced Materials, 2005, 17, 545-549.	21.0	108
166	The Role of Geometric Sites in 2D Materials for Energy Storage. Joule, 2018, 2, 1075-1094.	24.0	108
167	Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chemical Reviews, 2022, 122, 1000-1051.	47.7	106
168	Stoneâ^'Wales Defects in Single-Walled Boron Nitride Nanotubes:  Formation Energies, Electronic Structures, and Reactivity. Journal of Physical Chemistry C, 2008, 112, 1365-1370.	3.1	105
169	Growth of Single-Crystal Indium Nitride Nanotubes and Nanowires by a Controlled-Carbonitridation Reaction Route. Advanced Materials, 2004, 16, 1833-1838.	21.0	104
170	Holey Assembly of Twoâ€Dimensional Ironâ€Doped Nickelâ€Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application. ChemSusChem, 2020, 13, 1645-1655.	6.8	104
171	WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. Journal of Materials Chemistry, 2011, 21, 6525.	6.7	103
172	Boron–oxygen luminescence centres in boron–nitrogen systems. Chemical Communications, 2007, , 4599.	4.1	102
173	Tubeâ€inâ€Tube TiO ₂ Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties. Small, 2011, 7, 445-449.	10.0	101
174	Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 13076.	10.3	101
175	A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy, 2020, 70, 104550.	16.0	101
176	Ga-filled single-crystalline MgO nanotube: Wide-temperature range nanothermometer. Applied Physics Letters, 2003, 83, 999-1001.	3.3	100
177	Cerium Phosphate Nanotubes: Synthesis, Valence State, and Optical Properties. Angewandte Chemie - International Edition, 2005, 44, 576-579.	13.8	100
178	Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer. Nano Energy, 2015, 16, 19-27.	16.0	99
179	Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by <i>In Situ</i> Tem. ACS Nano, 2011, 5, 4401-4406.	14.6	98
180	Bulk Synthesis of Single-Crystalline Magnesium Oxide Nanotubes. Inorganic Chemistry, 2004, 43, 2462-2464.	4.0	97

#	Article	IF	Citations
181	Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology, 2011, 22, 145602.	2.6	97
182	Co3O4 nanocages with highly exposed $\{110\}$ facets for high-performance lithium storage. Scientific Reports, 2013, 3, 2543.	3.3	97
183	Syntheses and properties of B–C–N and BN nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2161-2186.	3.4	96
184	Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology, 2007, 18, 485706.	2.6	96
185	Periodic TiO ₂ Nanorod Arrays with Hexagonal Noncloseâ€Packed Arrangements: Excellent Field Emitters by Parameter Optimization. Advanced Functional Materials, 2009, 19, 2467-2473.	14.9	96
186	Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology, 2012, 23, 455705.	2.6	96
187	Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 2017, 20, 611-628.	14.2	96
188	Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy, 2016, 24, 111-120.	16.0	94
189	Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes. Angewandte Chemie - International Edition, 2003, 42, 3493-3497.	13.8	93
190	Copper-Filled Carbon Nanotubes: Rheostatlike Behavior and Femtogram Copper Mass Transport. Advanced Materials, 2007, 19, 1937-1942.	21.0	93
191	Flexible SnO2 hollow nanosphere film based high-performance ultraviolet photodetector. Chemical Communications, 2013, 49, 3739.	4.1	93
192	High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Materials Science & Discourse Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 681, 1-9.	5.6	93
193	Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction. Journal of Applied Physics, 1999, 86, 2364-2366.	2.5	92
194	Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. Physical Review B, 2006, 74, .	3.2	92
195	In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. Journal of Materials Chemistry, 2012, 22, 17984.	6.7	92
196	Unusual formation of \hat{l} ±-Fe2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium-ions batteries. Nano Energy, 2013, 2, 257-267.	16.0	92
197	Structure, transport and field-emission properties of compound nanotubes: CN x vs. BNC x (\times <0.1). Applied Physics A: Materials Science and Processing, 2003, 76, 499-507.	2.3	89
198	Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips:  Potential Luminescent and Field-Emitter Nanomaterial. Journal of Physical Chemistry C, 2008, 112, 4735-4742.	3.1	89

#	Article	IF	Citations
199	Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters, 2010, 97, .	3.3	89
200	Experimental and Theoretical Studies Suggesting the Possibility of Metallic Boron Nitride Edges in Porous Nanourchins. Nano Letters, 2008, 8, 1026-1032.	9.1	88
201	Noncovalent Functionalization of Disentangled Boron Nitride Nanotubes with Flavin Mononucleotides for Strong and Stable Visible-Light Emission in Aqueous Solution. ACS Applied Materials & Diterfaces, 2011, 3, 627-632.	8.0	88
202	A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology, 2012, 23, 215601.	2.6	88
203	Synthesis and thermoelectric behaviour of copper telluride nanosheets. Journal of Materials Chemistry A, 2014, 2, 985-990.	10.3	88
204	Young's Modulus and Tensile Strength of Ti ₃ C ₂ MXene Nanosheets As Revealed by <i>In Situ</i> TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Letters, 2020, 20, 5900-5908.	9.1	88
205	Insulating`nanocables': Invar Fe–Ni alloy nanorods inside BN nanotubes. Chemical Physics Letters, 2001, 347, 349-354.	2.6	87
206	Self-Assembly of SiO2 Nanowires and Si Microwires into Hierarchical Heterostructures on a Large Scale. Advanced Materials, 2005, 17, 971-975.	21.0	87
207	Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. ACS Applied Materials & Drug-Delivery Systems. ACS Applied Materials & Drug-Delivery Systems. ACS	8.0	87
208	Isolation of Individual Boron Nitride Nanotubes via Peptide Wrapping. Journal of the American Chemical Society, 2010, 132, 4976-4977.	13.7	86
209	An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. Dalton Transactions, 2013, 42, 2687.	3.3	86
210	<i>In vivo</i> biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians. Nanomedicine, 2015, 10, 1911-1922.	3.3	85
211	Unique morphologies of boron nitride nanotubes. Applied Physics Letters, 2001, 79, 415-417.	3.3	84
212	Purification of Boron Nitride Nanotubes through Polymer Wrapping. Journal of Physical Chemistry B, 2006, 110, 1525-1528.	2.6	84
213	Hybridization of Au nanoparticle-loaded TiO2 with BN nanosheets for efficient solar-driven photocatalysis. Journal of Materials Chemistry A, 2014, 2, 4150.	10.3	83
214	Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by <i>in situ</i> reversible addition fragmentation chain transfer polymerization. Nanotechnology, 2015, 26, 015705.	2.6	83
215	High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, $2015,16,81$ -90.	16.0	83
216	Single-Crystal Nanotubes of II3–V2 Semiconductors. Angewandte Chemie - International Edition, 2006, 45, 7568-7572.	13.8	82

#	Article	IF	CITATIONS
217	Post-Synthesis Carbon Doping of Individual Multiwalled Boron Nitride Nanotubes via Electron-Beam Irradiation. Journal of the American Chemical Society, 2010, 132, 13592-13593.	13.7	82
218	Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chemical Communications, 2013, 49, 7337.	4.1	82
219	Thermal Conductivity of Nanostructured Boron Nitride Materials. Journal of Physical Chemistry B, 2006, 110, 10354-10357.	2.6	81
220	Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. Journal of Materials Chemistry, 2012, 22, 4818.	6.7	81
221	Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 104-112.	5.6	81
222	In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives. Advanced Materials, 2017, 29, 1606922.	21.0	81
223	Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chemical Physics Letters, 1997, 279, 191-196.	2.6	79
224	Sn-Catalyzed Thermal Evaporation Synthesis of Tetrapod-Branched ZnSe Nanorod Architectures. Small, 2004, 1, 95-99.	10.0	79
225	Sn-Filled Single-Crystalline Wurtzite-Type ZnS Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 4606-4609.	13.8	78
226	Near-band-edge recombinations in multiwalled boron nitride nanotubes: Cathodoluminescence and photoluminescence spectroscopy measurements. Physical Review B, 2008, 77, .	3.2	78
227	Porous BCN Nanotubular Fibers:Â Growth and Spatially Resolved Cathodoluminescence. Journal of the American Chemical Society, 2005, 127, 16354-16355.	13.7	77
228	Structure and Fieldâ€Emission Properties of Subâ€Micrometerâ€Sized Tungstenâ€Whisker Arrays Fabricated by Vapor Deposition. Advanced Materials, 2009, 21, 2387-2392.	21.0	77
229	SiC–SiO2–C Coaxial Nanocables and Chains of Carbon Nanotube–SiC Heterojunctions. Advanced Materials, 2004, 16, 93-96.	21.0	76
230	A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch. Small, 2005, 1, 1088-1093.	10.0	76
231	Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chemical Communications, 2007, , 3048.	4.1	76
232	Self-Assembled Hierarchical Single-Crystalline \hat{l}^2 -SiC Nanoarchitectures. Crystal Growth and Design, 2007, 7, 35-38.	3.0	76
233	Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope. Acta Materialia, 2007, 55, 1293-1298.	7.9	76
234	Densely Interconnected Porous BN Frameworks for Multifunctional and Isotropically Thermoconductive Polymer Composites. Advanced Functional Materials, 2018, 28, 1801205.	14.9	76

#	Article	IF	CITATIONS
235	Shape- and Size-controlled Growth of ZnS Nanostructures. Journal of Physical Chemistry C, 2007, 111, 8469-8474.	3.1	75
236	Bandgapâ€Graded CdS _x Se _{1â€"x} Nanowires for Highâ€Performance Fieldâ€Effect Transistors and Solar Cells. Advanced Materials, 2013, 25, 1109-1113.	21.0	75
237	Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale, 2018, 10, 17477-17493.	5.6	7 5
238	Characteristics of Ti50Pd30Ni20 high-temperature shape memory alloy. Intermetallics, 1995, 3, 35-46.	3.9	74
239	Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Applied Physics Letters, 2003, 83, 2913-2915.	3.3	74
240	DNAâ€Mediated Assembly of Boron Nitride Nanotubes. Chemistry - an Asian Journal, 2007, 2, 1581-1585.	3.3	74
241	Fabrication of ZnSâ^•SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and) Tj ETQq.	. 1 0.7843 3.3	14 rgBT /
242	High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90, 123101.	3.3	73
243	Tensile Tests on Individual Singleâ€Walled Carbon Nanotubes: Linking Nanotube Strength with Its Defects. Advanced Materials, 2010, 22, 4071-4075.	21.0	73
244	Multiscale Buffering Engineering in Silicon–Carbon Anode for Ultrastable Li-Ion Storage. ACS Nano, 2019, 13, 10179-10190.	14.6	73
245	Improvement of a Ti50Pd30Ni20 high temperature shape memory alloy by thermomechanical treatments. Scripta Metallurgica Et Materialia, 1994, 30, 1349-1354.	1.0	72
246	Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chemical Physics Letters, 2004, 396, 167-173.	2.6	72
247	Ultrahigh Torsional Stiffness and Strength of Boron Nitride Nanotubes. Nano Letters, 2012, 12, 6347-6352.	9.1	72
248	Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy, 2020, 70, 104568.	16.0	72
249	Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diamond and Related Materials, 2003, 12, 1269-1274.	3.9	70
250	Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. Journal of Materials Chemistry A, 2015, 3, 3097-3102.	10.3	70
251	Nanotubes of Magnesium Borate. Angewandte Chemie - International Edition, 2003, 42, 1836-1838.	13.8	69
252	Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Applied Physics Letters, 2006, 88, 123107.	3.3	69

#	Article	IF	Citations
253	Al-based composites reinforced with AlB2, AlN and BN phases: Experimental and theoretical studies. Materials and Design, 2018, 141, 88-98.	7.0	69
254	Semiconducting B–C–N nanotubes with few layers. Chemical Physics Letters, 2002, 359, 220-228.	2.6	68
255	Quasi-aligned single-crystalline GaN nanowire arrays. Applied Physics Letters, 2005, 87, 073106.	3.3	68
256	Field Nanoemitters:Â Ultrathin BN Nanosheets Protruding from Si3N4Nanowires. Nano Letters, 2006, 6, 2982-2986.	9.1	68
257	Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites. Journal of Nanomaterials, 2008, 2008, 1-5.	2.7	68
258	Heterostructures and superlattices in one-dimensional nanoscale semiconductors. Journal of Materials Chemistry, 2009, 19, 5683.	6.7	68
259	High-performance Schottky solar cells using ZrS2 nanobelt networks. Energy and Environmental Science, 2011, 4, 2586.	30.8	68
260	Comparative Fracture Toughness of Multilayer Graphenes and Boronitrenes. Nano Letters, 2015, 15, 689-694.	9.1	68
261	Zincâ€Tiered Synthesis of 3D Graphene for Monolithic Electrodes. Advanced Materials, 2019, 31, e1901186.	21.0	68
262	Crossâ€Bar SnO ₂ â€NiO Nanofiberâ€Arrayâ€Based Transparent Photodetectors with High Detectivity. Advanced Electronic Materials, 2020, 6, 1901048.	5.1	68
263	Boron Nitride Nanotubes Filled with Ni and NiSi2Nanowires in Situ. Journal of Physical Chemistry B, 2003, 107, 6539-6543.	2.6	67
264	Carbon Nanotubes as Nanoreactors for Fabrication of Single-Crystalline Mg3N2Nanowires. Nano Letters, 2006, 6, 1136-1140.	9.1	67
265	Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Materials and Design, 2015, 88, 451-460.	7.0	67
266	Influence of fuel-oxygen content on morphology and nanostructure of soot particles. Combustion and Flame, 2019, 205, 206-219.	5.2	67
267	Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. Applied Physics Letters, 2002, 81, 5225-5227.	3.3	66
268	Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Materials, 2013, 5, e53-e53.	7.9	66
269	Self-sacrificial templated synthesis of a three-dimensional hierarchical macroporous honeycomb-like ZnO/ZnCo ₂ O ₄ hybrid for carbon monoxide sensing. Journal of Materials Chemistry A, 2019, 7, 3415-3425.	10.3	66
270	ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 8460-8471.	10.3	66

#	Article	lF	CITATIONS
271	Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution: Synthesis, magnetic properties and their application in water treatment. Journal of Materials Chemistry, 2011, 21, 17680.	6.7	65
272	A Two-Stage Route to Coaxial Cubic-Aluminum-Nitride–Boron- Nitride Composite Nanotubes. Advanced Materials, 2004, 16, 929-933.	21.0	64
273	Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. Nanoscale, 2014, 6, 8084.	5.6	64
274	New Boron Nitride Whiskers:Â Showing Strong Ultraviolet and Visible Light Luminescence. Journal of Physical Chemistry B, 2004, 108, 6193-6196.	2.6	63
275	Optical properties of multiwall boron nitride nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4147-4151.	1.5	63
276	Multibranched Junctions of Carbon Nanotubes via Cobalt Particles. Advanced Materials, 2009, 21, 4477-4482.	21.0	63
277	Mechanical Properties of Bamboo-like Boron Nitride Nanotubes by <i>In Situ</i> TEM and MD Simulations: Strengthening Effect of Interlocked Joint Interfaces. ACS Nano, 2011, 5, 7362-7368.	14.6	63
278	Production and Characterization of Coaxial Nanotube Junctions and Networks of CN _x /CNT. Nano Letters, 2007, 7, 2220-2226.	9.1	62
279	Dispersible Shortened Boron Nitride Nanotubes with Improved Moleculeâ€Loading Capacity. Chemistry - an Asian Journal, 2011, 6, 2530-2535.	3.3	62
280	Electrochemical Deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties. Science of Advanced Materials, 2010, 2, 336-358.	0.7	62
281	High-temperature shape memory effect in Ti50Pd50 â^ xNix (x = 10, 15, 20) alloys. Materials Letters, 1995, 22, 241-248.	2.6	61
282	High‥ield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. Advanced Materials, 2007, 19, 2141-2144.	21.0	61
283	Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine, 2014, 9, 773-788.	3.3	61
284	Boron nitride nanotubeâ€enhanced osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 323-329.	3.4	61
285	Indium-Assisted Growth of Aligned Ultra-Long Silica Nanotubes. Advanced Materials, 2004, 16, 37-40.	21.0	60
286	Synthesis of In ₂ O ₃ Nanowire-Decorated Ga ₂ O ₃ Nanobelt Heterostructures and Their Electrical and Field-Emission Properties. ACS Nano, 2010, 4, 2452-2458.	14.6	60
287	Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy. Acta Materialia, 2006, 54, 2567-2576.	7.9	59
288	Novel semiconducting nanowire heterostructures: synthesis, properties and applications. Journal of Materials Chemistry, 2009, 19, 330-343.	6.7	59

#	Article	IF	Citations
289	Structural Transformation, Photocatalytic, and Field-Emission Properties of Ridged TiO ₂ Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 1352-1358.	8.0	59
290	Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials. Advanced Materials, 2020, 32, e1904094.	21.0	59
291	Unconventional Gallium Oxide Nanowires. Small, 2005, 1, 883-888.	10.0	57
292	Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN (1â€‰â‰æ€‰xâ€‰â‰æ€‰5) Compositions. Advanced Materials, 2003, 15, 1899-1903.	21.0	56
293	Stepwise Current-Driven Release of Attogram Quantities of Copper Iodide Encapsulated in Carbon Nanotubes. Nano Letters, 2008, 8, 3120-3125.	9.1	56
294	Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Nanoscale, 2015, 7, 18992-18997.	5.6	56
295	Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chemical Engineering Journal, 2022, 445, 136344.	12.7	56
296	Indium-assisted synthesis on GaN nanotubes. Applied Physics Letters, 2004, 84, 3912-3914.	3.3	55
297	Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System. MRS Bulletin, 2004, 29, 38-42.	3.5	55
298	Excellent Field-Emission Properties of P-Doped GaN Nanowires. Journal of Physical Chemistry B, 2005, 109, 21521-21524.	2.6	55
299	Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. Chemical Communications, 2015, 51, 7104-7107.	4.1	55
300	Fabrication of Silica-Shielded Ga-ZnS Metal-Semiconductor Nanowire Heterojunctions. Advanced Materials, 2005, 17, 1964-1969.	21.0	54
301	Tailoring the Optical Properties of Epitaxially Grown Biaxial ZnO/Ge, and Coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge Heterostructures. Advanced Functional Materials, 2007, 17, 270-276.	14.9	54
302	Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20, 6630.	6.7	54
303	One stone, two birds: Gastrodia elata-derived heteroatom-doped carbon materials for efficient oxygen reduction electrocatalyst and as fluorescent decorative materials. Nano Energy, 2013, 2, 1261-1270.	16.0	54
304	Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites. Journal of Physics: Conference Series, 2013, 471, 012003.	0.4	54
305	Insulating Tubular BN Sheathing on Semiconducting Nanowires. Journal of the American Chemical Society, 2003, 125, 14226-14227.	13.7	53
306	Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1064-1068.	1.8	53

#	Article	IF	CITATIONS
307	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	13.8	53
308	Nanotubes of Boron Nitride Filled with Molybdenum Clusters. Journal of Nanoscience and Nanotechnology, 2001, 1, 49-54.	0.9	52
309	Fabrication of Metal-Semiconductor Nanowire Heterojunctions. Angewandte Chemie - International Edition, 2005, 44, 2140-2144.	13.8	52
310	Coaxial Cu–Si@C array electrodes for high-performance lithium ion batteries. Chemical Communications, 2011, 47, 12098.	4.1	52
311	Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by <i>In Situ</i> In Situ	14.6	52
312	Morphology-Controlled Synthesis of ZnO Nanostructures by a Simple Round-to-Round Metal Vapor Deposition Route. Journal of Physical Chemistry B, 2006, 110, 3973-3978.	2.6	51
313	Growth of Single-Crystalline Cubic GaN Nanotubes with Rectangular Cross-Sections. Advanced Materials, 2004, 16, 1465-1468.	21.0	50
314	Hollow Boron Nitride (BN) Nanocages and BN-Nanocage-Encapsulated Nanocrystals. Chemistry - A European Journal, 2004, 10, 3667-3672.	3.3	50
315	Single-Crystalline, Submicrometer-Sized ZnSe Tubes. Advanced Materials, 2005, 17, 975-979.	21.0	50
316	Self-Organized Hierarchical ZnS/SiO2Nanowire Heterostructures. Journal of Physical Chemistry B, 2006, 110, 7199-7202.	2.6	50
317	Chemical Unzipping of WS ₂ Nanotubes. ACS Nano, 2013, 7, 7311-7317.	14.6	50
318	Hydrogen Storage in Carbon and Oxygen Coâ€Doped Porous Boron Nitrides. Advanced Functional Materials, 2021, 31, 2007381.	14.9	50
319	Growth and Field-Emission Properties of Crystalline, Thin-Walled Carbon Microtubes. Advanced Materials, 2004, 16, 153-156.	21.0	49
320	Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chemical Physics Letters, 2006, 421, 86-90.	2.6	49
321	In Situ TEM-STM Recorded Kinetics of Boron Nitride Nanotube Failure under Current Flow. Nano Letters, 2009, 9, 2251-2254.	9.1	49
322	Large-scale synthesis and structure of boron nitride sub-micron spherical particles. Chemical Communications, 2002, , 2826-2827.	4.1	48
323	Systematic Investigation of the Formation of 1D \hat{l}_{\pm} -Si3N4 Nanostructures by Using a Thermal-Decomposition/Nitridation Process. Chemistry - A European Journal, 2006, 12, 2987-2993.	3.3	48
324	Recent developments in inorganically filled carbon nanotubes: successes and challenges. Science and Technology of Advanced Materials, 2010, 11, 054501.	6.1	48

#	Article	IF	Citations
325	Solution Growth and Cathodoluminescence of Novel SnO2 Coreâ [^] Shell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010, 114, 8235-8240.	3.1	48
326	Sandwich-Structured Ordered Mesoporous Polydopamine/MXene Hybrids as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14993-15001.	8.0	48
327	Growth of Wurtzite ZnS Micrometer-Sized Diskettes and Nanoribbon Arrays with Improved Luminescence. Advanced Functional Materials, 2005, 15, 757-762.	14.9	47
328	Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Applied Physics A: Materials Science and Processing, 2007, 88, 347-352.	2.3	47
329	Improved TiO ₂ Photocatalytic Reduction by the Intrinsic Electrostatic Potential of BN Nanotubes. Chemistry - an Asian Journal, 2010, 5, 1220-1224.	3.3	47
330	Comparative Studies on the Electrical and Mechanical Behavior of Catalytically Grown Multiwalled Carbon Nanotubes and Scrolled Graphene. Nano Letters, 2011, 11, 3295-3300.	9.1	47
331	Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF ₄ :Eu structures for cancer therapy. Chemical Communications, 2014, 50, 4371-4374.	4.1	47
332	Photocatalysis with Pt–Au–ZnO and Au–ZnO Hybrids: Effect of Charge Accumulation and Discharge Properties of Metal Nanoparticles. Langmuir, 2018, 34, 7334-7345.	3.5	47
333	Single-crystalline nanotubes of IIB-VI semiconductors. Applied Physics Letters, 2005, 87, 113107.	3.3	46
334	Nonwetting "white graphene―films. Acta Materialia, 2013, 61, 1266-1273.	7.9	46
335	Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Research Letters, 2013, 8, 3.	5.7	46
336	Synthesis and structure of InP nanowires and nanotubes. Chemical Physics Letters, 2003, 376, 676-682.	2.6	45
337	SnO2Nanoparticle-Functionalized Boron Nitride Nanotubes. Journal of Physical Chemistry B, 2006, 110, 8548-8550.	2.6	45
338	Grafting Boron Nitride Nanotubes:  From Polymers to Amorphous and Graphitic Carbon. Journal of Physical Chemistry C, 2007, 111, 1230-1233.	3.1	45
339	Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20, 085705.	2.6	45
340	Phases and crystallization of encapsulated cobalt nanorods inside BN nanotubes. Acta Materialia, 2004, 52, 601-606.	7.9	44
341	Growth of Semiconducting GaN Hollow Spheres and Nanotubes with Very Thin Shells via a Controllable Liquid Gallium-Gas Interface Chemical Reaction. Small, 2005, 1, 1094-1099.	10.0	44
342	Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors. Chemistry of Materials, 2008, 20, 6779-6783.	6.7	44

#	Article	IF	CITATIONS
343	Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13588-13592.	7.1	44
344	BNnanotubes coated with uniformly distributed Fe ₃ O ₄ nanoparticles: novel magneto-operable nanocomposites. Journal of Materials Chemistry, 2010, 20, 1007-1011.	6.7	44
345	Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nature Communications, 2011, 2, 421.	12.8	44
346	Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Materialia, 2012, 60, 6213-6222.	7.9	44
347	Nanoscale Bending of Multilayered Boron Nitride and Graphene Ribbons: Experiment and Objective Molecular Dynamics Calculations. Physical Review Letters, 2012, 109, 025504.	7.8	44
348	Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine. Nanobiomedicine, 2014, 1, 7.	5.7	44
349	Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride. Physical Review B, 1998, 57, 5655-5660.	3.2	43
350	Synthesis, HRTEM and electron diffraction studies of B/N-doped C and BN nanotubes. Diamond and Related Materials, 2001, 10, 63-67.	3.9	43
351	Field emission properties of macroscopic single-walled carbon nanotube strands. Applied Physics Letters, 2005, 86, 223114.	3.3	43
352	Wurtzite-type faceted single-crystalline GaN nanotubes. Applied Physics Letters, 2006, 88, 093120.	3.3	43
353	Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope. Advanced Materials, 2012, 24, 177-194.	21.0	43
354	Field emission from individual B–C–N nanotube rope. Applied Physics Letters, 2002, 81, 1083-1085.	3.3	42
355	Large-scale fabrication of boron nitride nanohorn. Applied Physics Letters, 2005, 87, 063107.	3.3	42
356	Carbon "Onions―as Point Electron Sources. ACS Nano, 2010, 4, 4396-4402.	14.6	42
357	Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Science and Technology of Advanced Materials, 2011, 12, 044605.	6.1	42
358	Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Materials Science & Department of Science & Structural Materials: Properties, Microstructure and Processing, 2014, 604, 9-17.	5.6	42
359	Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. ACS Applied Nano Materials, 2020, 3, 8982-8996.	5.0	42
360	The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Materials and Design, 2021, 199, 109403.	7.0	42

#	Article	IF	Citations
361	Efficient lithium-ion storage using a heterostructured porous carbon framework and its <i>in situ</i> i> transmission electron microscopy study. Chemical Communications, 2022, 58, 863-866.	4.1	42
362	Gaâ€Đoped ZnS Nanowires as Precursors for ZnO/ZnGa ₂ O ₄ Nanotubes. Advanced Materials, 2008, 20, 810-814.	21.0	41
363	Electron Emission from Individual Graphene Nanoribbons Driven by Internal Electric Field. ACS Nano, 2012, 6, 705-711.	14.6	41
364	Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine, 2016, 11, 447-463.	3.3	41
365	Boron-doped carbon fullerenes and nanotubules formed through electron irradiation-induced solid-state phase transformation. Applied Physics Letters, 1998, 72, 2108-2110.	3.3	40
366	Melting and expansion behavior of indium in carbon nanotubes. Applied Physics Letters, 2002, 81, 4133-4135.	3.3	40
367	SiO2-sheathed InS nanowires and SiO2 nanotubes. Applied Physics Letters, 2003, 83, 3999-4001.	3.3	40
368	Synthesis and Field-Emission Properties of Ga2O3â^C Nanocables. Chemistry of Materials, 2004, 16, 5158-5161.	6.7	40
369	Unconventional Zigzag Indium Phosphide Single-Crystalline and Twinned Nanowires. Journal of Physical Chemistry B, 2006, 110, 20129-20132.	2.6	40
370	Formation of Crystalline SrAl2O4 Nanotubes by a Roll-Up and Post-Annealing Approach. Angewandte Chemie - International Edition, 2006, 45, 4922-4926.	13.8	40
371	Si nanowire semisphere-like ensembles as field emitters. Chemical Communications, 2007, , 4093.	4.1	40
372	Spontaneous Coating of Carbon Nanotubes with an Ultrathin Polypyrrole Layer. Chemistry - A European Journal, 2007, 13, 7644-7649.	3.3	40
373	Interface Dynamic Behavior Between a Carbon Nanotube and Metal Electrode. Advanced Materials, 2010, 22, 93-98.	21.0	40
374	Dielectric and thermal properties of epoxy/boron nitride nanotube composites. Pure and Applied Chemistry, 2010, 82, 2175-2183.	1.9	40
375	Phonon-Assisted Electron Emission from Individual Carbon Nanotubes. Nano Letters, 2011, 11, 734-739.	9.1	40
376	High-yield boron nitride nanosheets from †chemical blowing': towards practical applications in polymer composites. Journal of Physics Condensed Matter, 2012, 24, 314205.	1.8	40
377	Revealing the Anomalous Tensile Properties of WS ₂ Nanotubes by in Situ Transmission Electron Microscopy. Nano Letters, 2013, 13, 1034-1040.	9.1	40
378	Single-Catalyst Confined Growth of ZnS/Si Composite Nanowires. Advanced Materials, 2005, 17, 225-230.	21.0	39

#	Article	IF	Citations
379	Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2551-2555.	2.7	39
380	Single-Crystalline and Twinned Zn ₃ P ₂ Nanowires: Synthesis, Characterization, and Electronic Properties. Journal of Physical Chemistry C, 2008, 112, 16405-16410.	3.1	39
381	Cheap, Gram-Scale Fabrication of BN Nanosheets via Substitution Reaction of Graphite Powders and Their Use for Mechanical Reinforcement of Polymers. Scientific Reports, 2014, 4, 4211.	3.3	39
382	Thermal stability of CsPbBr3 perovskite as revealed by <i>in situ</i> transmission electron microscopy. APL Materials, 2019, 7, .	5.1	39
383	(Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation. Chemical Engineering Journal, 2020, 395, 125109.	12.7	39
384	Single-Crystalline α-Al2O3 Nanotubes Converted from Al4O4C Nanowires. Advanced Materials, 2005, 17, 1401-1405.	21.0	38
385	pH sensor based on boron nitride nanotubes. Nanotechnology, 2009, 20, 415501.	2.6	38
386	Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition. Solid State Communications, 2011, 151, 183-186.	1.9	38
387	Local Coulomb Explosion of Boron Nitride Nanotubes under Electron Beam Irradiation. ACS Nano, 2013, 7, 3491-3497.	14.6	38
388	Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes and Graphene. ACS Nano, 2014, 8, 11305-11312.	14.6	38
389	Simultaneous Electropolymerization and Electro-Click Functionalization for Highly Versatile Surface Platforms. ACS Nano, 2014, 8, 5240-5248.	14.6	38
390	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37046-37056.	8.0	38
391	Molecule Ordering Triggered by Boron Nitride Nanotubes and "Green―Chemical Functionalization of Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2007, 111, 18545-18549.	3.1	37
392	Synthesis of chemically bonded CNT–graphene heterostructure arrays. RSC Advances, 2012, 2, 8250.	3.6	37
393	ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 8358-8365.	10.3	37
394	Improved cycling stability of NiS ₂ cathodes through designing a "kiwano―hollow structure. Journal of Materials Chemistry A, 2018, 6, 11978-11984.	10.3	37
395	Cables of BN-insulated B–C–N nanotubes. Applied Physics Letters, 2003, 82, 1275-1277.	3.3	36
396	Single-crystalline cubic structured InP nanosprings. Applied Physics Letters, 2006, 88, 243106.	3.3	36

#	Article	IF	CITATIONS
397	Solid–Solution Semiconductor Nanowires in Pseudobinary Systems. Nano Letters, 2013, 13, 85-90.	9.1	36
398	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 2018, 30, e1801600.	21.0	36
399	Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. Acta Materialia, 2013, 61, 7604-7615.	7.9	35
400	BCN Nanotubes as Highly Sensitive Torsional Electromechanical Transducers. Nano Letters, 2014, 14, 6132-6137.	9.1	35
401	One-Dimensional Nanostructures in Porous Anodic Alumina Membranes. Science of Advanced Materials, 2010, 2, 273-294.	0.7	35
402	Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. Physica B: Condensed Matter, 2002, 323, 60-66.	2.7	34
403	Chemical Peeling and Branching of Boron Nitride Nanotubes in Dimethyl Sulfoxide. Angewandte Chemie - International Edition, 2006, 45, 2044-2047.	13.8	34
404	Unconventional Ribbon-Shaped \hat{l}^2 -Ga $<$ sub >2 >0 <sub<math>>3</sub<math> > Tubes with Mobile Sn Nanowire Fillings. ACS Nano, 2008, 2, 107-112.	14.6	34
405	Bicrystalline Zn ₃ P ₂ and Cd ₃ P ₂ Nanobelts and Their Electronic Transport Properties. Chemistry of Materials, 2008, 20, 7319-7323.	6.7	34
406	BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9. Journal of Materials Chemistry, 2011, 21, 5219.	6.7	34
407	Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Research, 2015, 8, 2063-2072.	10.4	34
408	Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 775-784.	2.4	34
409	Multi-walled BN nanotubes synthesized by carbon-free method. Journal of Solid State Chemistry, 2004, 177, 2670-2674.	2.9	33
410	Bicrystalline ZnS Microbelts. Crystal Growth and Design, 2009, 9, 2790-2793.	3.0	33
411	Thin boron nitride nanotubes with exceptionally high strength and toughness. Nanoscale, 2013, 5, 4840.	5.6	33
412	Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycol. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 74-81.	5.6	33
413	Below 200 °C Fabrication Strategy of Blackâ€Phase CsPbI ₃ Film for Ambientâ€Airâ€Stable Sola Cells. Solar Rrl, 2020, 4, 2000014.	r 5.8	33
414	Nanoscale Oxygen Generators:Â MgO2-Based Fillings of BN Nanotubes. Journal of Physical Chemistry B, 2003, 107, 8726-8729.	2.6	32

#	Article	IF	Citations
415	Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. Chemical Communications, 2003, , 3050.	4.1	32
416	In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Applied Physics Letters, 2006, 88, 123101.	3.3	32
417	Cobalt Nanoparticle-Assisted Engineering of Multiwall Carbon Nanotubes. ACS Nano, 2009, 3, 2632-2638.	14.6	32
418	Enhanced Field-Emission and Red Lasing of Ordered CdSe Nanowire Branched Arrays. Journal of Physical Chemistry C, 2011, 115, 9740-9745.	3.1	32
419	Enhanced Field Emission and Optical Properties of Controlled Tapered ZnS Nanostructures. Journal of Physical Chemistry C, 2012, 116, 8297-8304.	3.1	32
420	Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. Nanoscale, 2012, 4, 6318.	5.6	32
421	Individual Boron Nanowire Has Ultra-High Specific Young's Modulus and Fracture Strength As Revealed by <i>in Situ</i> i> Transmission Electron Microscopy. ACS Nano, 2013, 7, 10112-10120.	14.6	32
422	Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Materials, 2018, 11, 83-90.	18.0	32
423	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science, 2021, 374, 1616-1620.	12.6	32
424	Superstrong Lowâ€Resistant Carbon Nanotube–Carbide–Metal Nanocontacts. Advanced Materials, 2010, 22, 5350-5355.	21.0	31
425	Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization. RSC Advances, 2012, 2, 6200.	3.6	31
426	Fullerene and onion formation under electron irradiation of boron-doped graphite. Carbon, 1999, 37, 293-299.	10.3	30
427	Hollow and Polygonous Microtubes of Monocrystalline Indium Germanate. Angewandte Chemie - International Edition, 2006, 45, 228-231.	13.8	30
428	In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chemical Society Reviews, 2016, 45, 2694-2713.	38.1	30
429	Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42485-42498.	8.0	30
430	Probing electrochemical reactivity in an Sb ₂ S ₃ -containing potassium-ion battery anode: observation of an increased capacity. Journal of Materials Chemistry A, 2020, 8, 11424-11434.	10.3	30
431	Boron nitride nanotubes as nanocrucibles for morphology and phase transformations in encapsulated nanowires of the Mg–O system. Acta Materialia, 2004, 52, 3295-3303.	7.9	29
432	Carbon-Coated Single-Crystalline Zinc Sulfide Nanowires. Journal of Physical Chemistry B, 2006, 110, 20777-20780.	2.6	29

#	Article	IF	CITATIONS
433	Synthesis and Structures of High-Quality Single-Crystalline II3â^'V2Semiconductors Nanobelts. Journal of Physical Chemistry C, 2007, 111, 5044-5049.	3.1	29
434	Sb2O3nanobelt networks for excellent visible-light-range photodetectors. Nanotechnology, 2011, 22, 165704.	2.6	29
435	Heterostructures of vertical, aligned and dense SnO2 nanorods on graphene sheets: in situ TEM measured mechanical, electrical and field emission properties. Journal of Materials Chemistry, 2012, 22, 19196.	6.7	29
436	Oxygen Vacancy Driven Modulations in In ₂ O ₃ Pyramidal Beaded Nanowires. Crystal Growth and Design, 2012, 12, 4935-4943.	3.0	29
437	Nonwetting and optical properties of BN nanosheet films. Surface Innovations, 2013, 1, 32-39.	2.3	29
438	NiCo ₂ O ₄ Nanostructures as a Promising Alternative for NiO Photocathodes in pâ€Type Dyeâ€Sensitized Solar Cells with High Efficiency. Energy Technology, 2014, 2, 517-521.	3.8	29
439	Growth of Largeâ€Scale Boron Nanowire Patterns with Identical Baseâ€Up Mode and In Situ Field Emission Studies of Individual Boron Nanowire. Small, 2014, 10, 685-693.	10.0	29
440	Synthesis and Characterization of Folate Conjugated Boron Nitride Nanocarriers for Targeted Drug Delivery. Journal of Physical Chemistry C, 2017, 121, 28096-28105.	3.1	29
441	A facile, environmentally friendly synthesis of strong photo-emissive methylammonium lead bromide perovskite nanocrystals enabled by ionic liquids. Green Chemistry, 2020, 22, 3433-3440.	9.0	29
442	Synthesis of nanocrystalline nitrogen-rich carbon nitride powders at high pressure. Diamond and Related Materials, 2002, 11, 1885-1889.	3.9	28
443	Nanocomposites: synthesis and elemental mapping of aligned B–C–N nanotubes. Chemical Physics Letters, 2002, 360, 1-7.	2.6	28
444	Torsional Resonators Based on Inorganic Nanotubes. Nano Letters, 2017, 17, 28-35.	9.1	28
445	BN tubular layer-sheathed CaS:Eu2+ nanowires as stable red-light-emitting nanophosphors. Chemical Communications, 2009, , 6631.	4.1	27
446	Properties and engineering of individual inorganic nanotubes in a transmission electron microscope. Journal of Materials Chemistry, 2009, 19, 909.	6.7	27
447	Self-assembled ZnS nanowire arrays: synthesis, <i>in situ</i> Cu doping and field emission. Nanotechnology, 2010, 21, 375601.	2.6	27
448	Enhanced Field Emission Performance of Ga-Doped In2O3(ZnO)3 Superlattice Nanobelts. Journal of Physical Chemistry C, 2011, 115, 24564-24568.	3.1	27
449	Nitrogenâ€Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2013, 30, 864-872.	2.3	27
450	High-Yield Synthesis of Boron Nitride Nanoribbons <i>via</i> Longitudinal Splitting of Boron Nitride Nanotubes by Potassium Vapor. ACS Nano, 2014, 8, 9867-9873.	14.6	27

#	Article	IF	CITATIONS
451	Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS Applied Materials & Drug Resistance. 32498-32508.	8.0	27
452	Room temperature carbon monoxide oxidation based on two-dimensional gold-loaded mesoporous iron oxide nanoflakes. Chemical Communications, 2018, 54, 8514-8517.	4.1	27
453	Mesoporous TiO ₂ -based architectures as promising sensing materials towards next-generation biosensing applications. Journal of Materials Chemistry B, 2021, 9, 1189-1207.	5.8	27
454	Biodegradable and Peroxidaseâ€Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Advanced Science, 2021, 8, e2101184.	11.2	27
455	Flexible conductive polymer composite materials based on strutted graphene foam. Composites Communications, 2021, 25, 100757.	6.3	27
456	An athermal deformation model of the yield stress anomaly in Ni3Al. Intermetallics, 2007, 15, 1322-1331.	3.9	26
457	ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. Journal of Materials Science, 2008, 43, 1460-1470.	3.7	26
458	Effect of crystalline filling on the mechanical response of carbon nanotubes. Carbon, 2009, 47, 541-544.	10.3	26
459	Prospective important semiconducting nanotubes: synthesis, properties and applications. Journal of Materials Chemistry, 2009, 19, 7592.	6.7	26
460	Exfoliating the inorganics. Nature Nanotechnology, 2011, 6, 200-201.	31.5	26
461	Observations of the electrical behaviour of catalytically grown scrolled graphene. Carbon, 2011, 49, 1821-1828.	10.3	26
462	Nanostructured solar cells harvesting multi-type energies. Energy and Environmental Science, 2012, 5, 6040.	30.8	26
463	Nanowires sheathed inside nanotubes: Manipulation, properties and applications. Progress in Materials Science, 2015, 70, 1-49.	32.8	26
464	Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM. Nano Letters, 2016, 16, 6008-6013.	9.1	26
465	Hexagonal BN- and BNO-supported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions. Applied Catalysis B: Environmental, 2022, 303, 120891.	20.2	26
466	Effect of Al-rich off-stoichiometry on the yield stress of binary Ni3Al single crystals. Acta Materialia, 1998, 46, 2695-2703.	7.9	25
467	C to BN conversion in multi-walled nanotubes as revealed by energy-filtering transmission electron microscopy. Chemical Physics Letters, 2001, 346, 29-34.	2.6	25
468	Template-free synthesis on single-crystalline InP nanotubes. Applied Physics Letters, 2004, 85, 3869-3871.	3.3	25

#	Article	IF	CITATIONS
469	Single-crystalline trumpetlike zinc phosphide nanostructures. Applied Physics Letters, 2006, 88, 143105.	3.3	25
470	Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. International Journal of Nanotechnology, 2007, 4, 730.	0.2	25
471	Experimental Analysis of the Morphology and Nanostructure of Soot Particles for Butanol/Diesel Blends at Different Engine Operating Modes. Energy & Samp; Fuels, 2019, 33, 5632-5646.	5.1	25
472	Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage. Nano-Micro Letters, 2020, 12, 48.	27.0	25
473	Formation, Structure, and Structural Properties of a New Filamentary Tubular Form:Â Hollow Conical-Helix of Graphitic Boron Nitride. Journal of the American Chemical Society, 2003, 125, 8032-8038.	13.7	24
474	Donor–Acceptor Nanoensembles Based on Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 934-938.	21.0	24
475	Nanotubes in a gradient electric field as revealed by STM TEM technique. Nano Research, 2008, 1, 166-175.	10.4	24
476	Heteroepitaxial Growth of Orientation-Ordered ZnS Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 12299-12303.	3.1	24
477	Quasi-Aligned Ga ₂ O ₃ Nanowires Grown on Brass Wire Meshes and Their Electrical and Field-Emission Properties. Journal of Physical Chemistry C, 2009, 113, 1980-1983.	3.1	24
478	Recent Advances in Boron Nitride Nanotubes and Nanosheets. Israel Journal of Chemistry, 2010, 50, 405-416.	2.3	24
479	Asymmetric tungsten oxide nanobrushes via oriented attachment and Ostwald ripening. CrystEngComm, 2011, 13, 4074.	2.6	24
480	Toward Stronger Al–BN Nanotube Composite Materials: Insights into Bonding at the Al/BN Interface from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 26894-26901.	3.1	24
481	Reversible Tuning of Individual Carbon Nanotube Mechanical Properties via Defect Engineering. Nano Letters, 2016, 16, 5221-5227.	9.1	24
482	Unveiling the Working Mechanism of Graphene Bubble Film/Silicon Composite Anodes in Li-Ion Batteries: From Experiment to Modeling. ACS Applied Energy Materials, 2020, 3, 521-531.	5.1	24
483	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	2.0	24
484	Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochimica Acta, 2021, 389, 138717.	5.2	24
485	Nanocages of layered BN: Super-high-pressure nanocells for formation of solid nitrogen. Journal of Chemical Physics, 2002, 116, 8523.	3.0	23
486	Nanofabrication on ZnO nanowires. Applied Physics Letters, 2006, 89, 243111.	3.3	23

#	Article	IF	CITATIONS
487	Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1–xS nanostructures. Pure and Applied Chemistry, 2010, 82, 2027-2053.	1.9	23
488	Melting of Metallic Electrodes and Their Flowing Through a Carbon Nanotube Channel within a Device. Advanced Materials, 2013, 25, 2693-2699.	21.0	23
489	BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments. Catalysis Science and Technology, 2018, 8, 1652-1662.	4.1	23
490	Synthesis of Highly-Oriented Black CsPbI ₃ Microstructures for High-Performance Solar Cells. Chemistry of Materials, 2020, 32, 3235-3244.	6.7	23
491	Vanadiumâ€Containing Layered Materials as Highâ€Performance Cathodes for Aqueous Zincâ€lon Batteries. Advanced Materials Technologies, 2022, 7, 2100505.	5.8	23
492	Synthesis of carbon nanotubes below room temperature. Carbon, 2001, 39, 155-158.	10.3	22
493	Electron Field Emission from Self-Organized Micro-Emitters of sp3-Bonded 5H Boron Nitride with Very High Current Density at Low Electric Field. Journal of Physical Chemistry B, 2004, 108, 5182-5184.	2.6	22
494	Uniform and high-quality submicrometer tubes of GaS layered crystals. Applied Physics Letters, 2005, 87, 153112.	3.3	22
495	Fabrication of ZnO Nanoplate-Nanorod Junctions. Small, 2006, 2, 62-65.	10.0	22
496	Tapered Carbon Nanotubes from Activated Carbon Powders. Advanced Materials, 2006, 18, 197-200.	21.0	22
497	Electron-Beam-Induced Synthesis and Characterization of W ₁₈ O ₄₉ Nanowires. Journal of Physical Chemistry C, 2008, 112, 5856-5859.	3.1	22
498	Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume. Physical Review B, 2009, 80, .	3.2	22
499	n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays. Nanoscale, 2012, 4, 737-741.	5.6	22
500	Defects and Deformation of Boron Nitride Nanotubes Studied by Joint Nanoscale Mechanical and Infrared Near-Field Microscopy. Journal of Physical Chemistry C, 2016, 120, 1945-1951.	3.1	22
501	Near-Field Infrared Pump–Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 289-294.	4.6	22
502	Highly dispersed secondary building unit-stabilized binary metal center on a hierarchical porous carbon matrix for enhanced oxygen evolution reaction. Nanoscale, 2021, 13, 1213-1219.	5.6	22
503	Paramagnetic defects in boron nitride nanostructures. Chemical Physics Letters, 2005, 413, 47-51.	2.6	21
504	Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights. Journal of Catalysis, 2021, 402, 130-142.	6.2	21

#	Article	IF	Citations
505	High-resolution analytical electron microscopy of boron nitrides laser heated at high pressure. Journal of Electron Microscopy, 1997, 46, 281-292.	0.9	20
506	Direct Pyrolysis Method for Superconducting Crystalline MgB2 Nanowires. Chemistry of Materials, 2003, 15, 3194-3197.	6.7	20
507	Synthesis of InN/InP core/sheath nanowires. Applied Physics Letters, 2004, 84, 1546-1548.	3.3	20
508	Synthesis and optical study of crystalline GaP nanoflowers. Applied Physics Letters, 2005, 86, 083107.	3.3	20
509	Size-Tunable Synthesis of SiO2Nanotubes via a Simple In Situ Templatelike Process. Journal of Physical Chemistry B, 2006, 110, 23170-23174.	2.6	20
510	New Crystalline Phase Induced by Boron Nitride Nanotubes in Polyaniline. Journal of Physical Chemistry C, 2008, 112, 17592-17595.	3.1	20
511	The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa ₂ O ₄ nanorods. Nanotechnology, 2009, 20, 365705.	2.6	20
512	Metal ion implantation of multiwalled boron nitride nanotubes. Scripta Materialia, 2012, 67, 507-510.	5.2	20
513	Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals. Journal of Materials Chemistry A, 2015, 3, 20749-20757.	10.3	20
514	h-BN nanosheets as simple and effective additives to largely enhance the activity of Au/TiO ₂ plasmonic photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 79-83.	2.8	20
515	Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. Advanced Functional Materials, 2019, 29, 1900311.	14.9	20
516	AlÂâ^' BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verification. Journal of Alloys and Compounds, 2019, 782, 875-880.	5.5	20
517	Interfacial Engineering with Liquid Metal for Si-Based Hybrid Electrodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5147-5152.	5.1	20
518	Compliance to Schmid's law in the stress anomaly regime of binary stoichiometric Ni3Al. Acta Materialia, 1999, 47, 3441-3446.	7.9	19
519	Atomic resolution of single-walled carbon nanotubes using a field emission high-resolution transmission electron microscope. Carbon, 1999, 37, 1858-1860.	10.3	19
520	Siâ^•ZnS and Siâ^•ZnSe core/shell nanocrystal structures. Applied Physics Letters, 2004, 85, 3593-3595.	3.3	19
521	Nanoanalysis by a high-resolution energy filtering transmission electron microscope. Microscopy Research and Technique, 2004, 63, 140-148.	2.2	19
522	Real-time observation of liquid Indium unusual behavior inside silica nanotubes. Chemical Physics Letters, 2005, 409, 75-80.	2.6	19

#	Article	IF	CITATIONS
523	Multiwalled Boron Nitride Nanotubes: Growth, Properties, and Applications. , 2009, , 23-44.		19
524	Effect of Size-Dependent Thermal Instability on Synthesis of Zn2SiO4-SiO x Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties. Nanoscale Research Letters, 2010, 5, 773-780.	5.7	19
525	Crystallography of Novel T-Shaped ZnS Nanostructures and Their Cathodoluminescence. Crystal Growth and Design, 2010, 10, 4143-4147.	3.0	19
526	High-yield synthesis of single-crystalline zinc oxide nanobelts and their applications in novel Schottky solar cells. Chemical Communications, 2011, 47, 8247.	4.1	19
527	Synthesis of CeB6 thin films by physical vapor deposition and their field emission investigations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 117-120.	3.5	19
528	Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study. Nanoscale, 2016, 8, 20080-20089.	5.6	19
529	Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope. Small, 2017, 13, 1701564.	10.0	19
530	Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery. Sustainable Materials and Technologies, 2020, 26, e00230.	3.3	19
531	Galvanic replacement of liquid metal Galinstan with copper for the formation of photocatalytically active nanomaterials. New Journal of Chemistry, 2020, 44, 14979-14988.	2.8	19
532	Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5734-5741.	6.7	19
533	Stable single atomic silver wires assembling into a circuitry-connectable nanoarray. Nature Communications, 2021, 12, 1191.	12.8	19
534	Twoâ€probe electrical measurements in transmission electron microscopes—Behavioral control of tungsten microwires. Microscopy Research and Technique, 2009, 72, 93-100.	2.2	18
535	352 nm ultraviolet emission from high-quality crystalline AlN whiskers. Nanotechnology, 2010, 21, 075708.	2.6	18
536	Current Imaging and Electromigration-Induced Splitting of GaN Nanowires As Revealed by Conductive Atomic Force Microscopy. ACS Nano, 2010, 4, 2422-2428.	14.6	18
537	Morphology-Driven Nonwettability of Nanostructured BN Surfaces. Langmuir, 2013, 29, 7529-7533.	3.5	18
538	Magnetically Assembled Ni@Ag Urchinâ€Like Ensembles with Ultraâ€Sharp Tips and Numerous Gaps for SERS Applications. Small, 2014, 10, 2564-2569.	10.0	18
539	Lateral piezopotential-gated field-effect transistor of ZnO nanowires. Nano Energy, 2015, 13, 233-239.	16.0	18
540	Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers. Nanotechnology, 2015, 26, 115702.	2.6	18

#	Article	IF	Citations
541	Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core–Shell Nanowires As Revealed by ⟨i⟩in situ⟨/i⟩ Transmission Electron Microscopy. Nano Letters, 2018, 18, 7238-7246.	9.1	18
542	Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. Journal of Catalysis, 2018, 368, 217-227.	6.2	18
543	BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents. Beilstein Journal of Nanotechnology, 2018, 9, 250-261.	2.8	18
544	Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. Journal of Materiomics, 2021, 7, 219-225.	5.7	18
545	Iron in NiAl intermetallic compound: atomic arrangements and associated magnetic properties and electronic structures. Intermetallics, 1995, 3, 293-301.	3.9	17
546	Peculiarities of Fe?Ni alloy crystallization and stability inside C nanotubes as derived through electron microscopy. Acta Materialia, 2005, 53, 1583-1593.	7.9	17
547	Discrimination of B–C–N nanotubes through energy-filtering electron microscopy. Diamond and Related Materials, 2005, 14, 1857-1866.	3.9	17
548	Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes. Nanotechnology, 2006, 17, 5882-5888.	2.6	17
549	Boron Nitride Nanotubes: Nanoparticles Functionalization and Junction Fabrication. Journal of Nanoscience and Nanotechnology, 2007, 7, 530-534.	0.9	17
550	Ion irradiation of multiâ€walled boron nitride nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1256-1259.	0.8	17
551	Noncovalent functionalization of boron nitride nanotubes using water-soluble synthetic polymers and the subsequent preparation of superhydrophobic surfaces. Polymer Journal, 2013, 45, 567-570.	2.7	17
552	<i>In situ</i> fabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope. Nanotechnology, 2015, 26, 154001.	2.6	17
553	Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries. Electrochimica Acta, 2021, 394, 139139.	5.2	17
554	The First Template-Free Growth of Crystalline Silicon Microtubes. Advanced Functional Materials, 2004, 14, 610-614.	14.9	16
555	Electronic structure of boron nitride cone-shaped nanostructures. Physical Review B, 2005, 72, .	3.2	16
556	Tubular Carbon Nano-/Microstructures Synthesized from Graphite Powders by an in Situ Template Process. Journal of Physical Chemistry B, 2006, 110, 10714-10719.	2.6	16
557	Structure and cathodoluminescence of hierarchical Zn3P2â^•ZnS nanotube/nanowire heterostructures. Applied Physics Letters, 2007, 90, 073115.	3.3	16
558	Electrical field-assisted thermal decomposition of boron nitride nanotube: Experiments and first principle calculations. Chemical Physics Letters, 2009, 480, 110-112.	2.6	16

#	Article	IF	CITATIONS
559	Dense and vertically-aligned centimetre-long ZnS nanowire arrays: ionic liquid assisted synthesis and their field emission properties. Nanoscale, 2012, 4, 2658.	5. 6	16
560	Weak morphology dependent valence band structure of boron nitride. Journal of Applied Physics, 2013, 114, .	2.5	16
561	Solid Solution, Phase Separation, and Cathodoluminescence of GaP–ZnS Nanostructures. ACS Applied Materials & Distriction (1998) (199	8.0	16
562	Structural analysis and atomic simulation of Ag/BN nanoparticle hybrids obtained by Ag ion implantation. Materials and Design, 2016, 98, $167-173$.	7.0	16
563	Visualizing nanoscale heat pathways. Nano Energy, 2018, 52, 323-328.	16.0	16
564	Structure and Superelasticity of Novel Zr-Rich Ti-Zr–Nb Shape Memory Alloys. Shape Memory and Superelasticity, 2021, 7, 304-313.	2.2	16
565	New fullerenes in the B-C-N system: synthesis and analysis by an electron beam. Journal of Electron Microscopy, 1999, 48, 701-709.	0.9	15
566	New 300 kV Energy-Filtering Field Emission Electron Microscope. Japanese Journal of Applied Physics, 2001, 40, L1193-L1196.	1.5	15
567	Elastic deformation of helical-conical boron nitride nanotubes. Journal of Chemical Physics, 2003, 119, 3436-3440.	3.0	15
568	Mnâ^'Si-Catalyzed Synthesis and Tip-End-Induced Room Temperature Ferromagnetism of SiC/SiO ₂ Coreâ^'Shell Heterostructures. Journal of Physical Chemistry C, 2008, 112, 18911-18915.	3.1	15
569	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus. Nanotechnology, 2009, 20, 405706.	2.6	15
570	Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope. Nanotechnology, 2011, 22, 485707.	2.6	15
571	Controlled synthesis of patterned W18O49 nanowire vertical-arrays and improved field emission performance by in situ plasma treatment. Journal of Materials Chemistry C, 2013, 1, 3217.	5.5	15
572	Dispersion of Boron Nitride Nanotubes in Aqueous Solution by Simple Aromatic Molecules. Journal of Nanoscience and Nanotechnology, 2014, 14, 3028-3033.	0.9	15
573	Molten Au/Ge Alloy Migration in Ge Nanowires. Nano Letters, 2015, 15, 2809-2816.	9.1	15
574	Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation. Chemical Communications, 2018, 54, 9494-9497.	4.1	15
575	Single crystal growth and characterization of binary stoichiometric and Al-rich Ni3Al. Journal of Crystal Growth, 1998, 186, 624-628.	1.5	14
576	Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. Chemical Physics Letters, 2003, 372, 635-639.	2.6	14

#	Article	IF	CITATIONS
577	Synthesis and Interface Structures of Zinc Sulfide Sheathed Zincâ'Cadmium Nanowire Heterojunctions. Journal of Physical Chemistry B, 2006, 110, 14123-14127.	2.6	14
578	Electrical properties of CNx nanotubes probed in a transmission electron microscope. Applied Physics A: Materials Science and Processing, 2007, 90, 225-229.	2.3	14
579	Synthesis of metal–semiconductor heterojunctions inside carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 4414.	6.7	14
580	Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution. Soft Matter, 2011, 7, 8753.	2.7	14
581	The electrical delivery of a sublimable II–VI compound by vapor transport in carbon nanotubes. Carbon, 2011, 49, 3747-3754.	10.3	14
582	Preparation and Hydrogen Sorption Performances of BCNO Porous Microbelts with Ultraâ€Narrow and Tunable Pore Widths. Chemistry - an Asian Journal, 2013, 8, 2936-2939.	3.3	14
583	Nanostructured polymeric yolk–shell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016, 4, 9850-9857.	10.3	14
584	Growth of spherical boron oxynitride nanoparticles with smooth and petalled surfaces during a chemical vapour deposition process. CrystEngComm, 2016, 18, 6689-6699.	2.6	14
585	Boron nitride nanotube-based amphiphilic hybrid nanomaterials for superior encapsulation of hydrophobic cargos. Materials Today Chemistry, 2017, 6, 45-50.	3.5	14
586	Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite. Journal of Materials Chemistry C, 2018, 6, 11707-11713.	5.5	14
587	Synthesis and magnetic study for Ga1â^'xMnxN whiskers. Chemical Physics Letters, 2005, 405, 127-130.	2.6	13
588	Liquid Gallium Columns Sheathed with Carbon:  Bulk Synthesis and Manipulation. Journal of Physical Chemistry B, 2005, 109, 11580-11584.	2.6	13
589	Centimeter-long Ta ₃ N ₅ nanobelts: synthesis, electrical transport, and photoconductive properties. Nanotechnology, 2013, 24, 175701.	2.6	13
590	Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge. Journal of Nanophotonics, 2016, 10, 012520.	1.0	13
591	Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25, e00181.	3.3	13
592	InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3665-3668.	3.1	12
593	Crystallography and elasticity of individual GaN nanotubes. Nanotechnology, 2009, 20, 185705.	2.6	12
594	Rectangular or square, tapered, and single-crystal PbTe nanotubes. Journal of Materials Chemistry, 2009, 19, 3063.	6.7	12

#	Article	IF	Citations
595	Synthesis and <l>ln-Situ</l> TEM Transport Measurements of Individual GaN Nanowires and Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3945-3951.	0.9	12
596	Comparative study of the stability of sulfide materials encapsulated in and expelled from multi-walled carbon nanotube capsules. Carbon, 2011, 49, 342-346.	10.3	12
597	Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes. Journal of Applied Physics, 2015, 118, 234307.	2.5	12
598	Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy. Nano Letters, 2015, 15, 4922-4927.	9.1	12
599	Nanostructured BN–Mg composites: features of interface bonding and mechanical properties. Physical Chemistry Chemical Physics, 2016, 18, 965-969.	2.8	12
600	Mechanical properties of decellularized extracellular matrix coated with TiCaPCON film. Biomedical Materials (Bristol), 2017, 12, 035014.	3.3	12
601	Enhanced Liâ€lonâ€Storage Performance of MoS ₂ through Multistage Structural Design. ChemElectroChem, 2019, 6, 1475-1484.	3.4	12
602	Effects of ageing at 673 K on the compressive behaviour of ã€^110〉 oriented (â€~soft') NiAl single crystals polycrystals with and without Ti additions. Intermetallics, 1996, 4, 143-158.	and	11
603	Preparation and structure of magnesium oxide coated indium nanowires. Chemical Physics Letters, 2003, 382, 374-380.	2.6	11
604	Nanotubes of Magnesium Borate. Angewandte Chemie, 2003, 115, 1880-1882.	2.0	11
605	Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes. Angewandte Chemie, 2003, 115, 3617-3621.	2.0	11
606	Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Applied Physics Letters, 2007, 91, 223108.	3.3	11
607	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects. Nanotechnology, 2009, 20, 405707.	2.6	11
608	Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. Journal of Applied Physics, 2009, 106, 034302.	2.5	11
609	Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties. Nanotechnology, 2010, 21, 115705.	2.6	11
610	Thin-walled B–C–N ternary microtubes: from synthesis to electrical, cathodoluminescence and field-emission properties. Journal of Materials Chemistry, 2012, 22, 8134.	6.7	11
611	Growth of Single-Crystal Ca ₁₀ (Pt ₄ As ₈)(Fe _{1.8} Pt _{0.2} As ₂)Nanowhiskers with Superconductivity up to 33 K. Journal of the American Chemical Society, 2012, 134, 4068-4071.	>5	11
612	Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. Journal of Physical Chemistry Letters, 2018, 9, 5086-5091.	4.6	11

#	Article	IF	CITATIONS
613	Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by <i>in Situ</i> i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 2084-2091.	9.1	11
614	Polyol Synthesis of Ag/BN Nanohybrids and their Catalytic Stability in CO Oxidation Reaction. ChemCatChem, 2020, 12, 1691-1698.	3.7	11
615	Compressive flow stress of a binary stoichiometric Ni3Al single crystal. Scripta Materialia, 1997, 37, 1777-1782.	5.2	10
616	Mg2Zn11–MgO belt-like nanocables. Chemical Physics Letters, 2003, 375, 102-105.	2.6	10
617	In situ electrical measurements and manipulation of B/N-doped C nanotubes in a high-resolution transmission electron microscope. Journal of Electron Microscopy, 2003, 52, 111-117.	0.9	10
618	The tubular conical helix of graphitic boron nitride. New Journal of Physics, 2003, 5, 118-118.	2.9	10
619	In situ growth of Indium nanocrystals on InP nanorods mediated by electron beam of transmission electron microscope. Chemical Physics Letters, 2005, 416, 321-326.	2.6	10
620	Mg3N2-Ga: Nanoscale Semiconductor–Liquid Metal Heterojunctions inside Graphitic Carbon Nanotubes. Advanced Materials, 2007, 19, 1342-1346.	21.0	10
621	Photoinduced Charge Injection and Bandgap-Engineering of High-Specific-Surface-Area BN Nanotubes using a Zinc Phthalocyanine Monolayer. Small, 2007, 3, 1330-1335.	10.0	10
622	Intercrystalline distal-effect on the afterglow phenomenon in photoluminescent SrAl ₂ O ₄ :Ce(III), Ln nanotube growth. Nanotechnology, 2010, 21, 325707.	2.6	10
623	Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes. Physical Review B, 2011, 84, .	3.2	10
624	Silicon multi-branch nanostructures for decent field emission and excellent electrical transport. Nanotechnology, 2011, 22, 145705.	2.6	10
625	Goldâ€Loaded Nanoporous Iron Oxide Cubes Derived from Prussian Blue as Carbon Monoxide Oxidation Catalyst at Room Temperature. ChemistrySelect, 2018, 3, 13464-13469.	1.5	10
626	Effect of Fe3+ for Ru4+ substitution in disordered Na1.33Ru0.67O2 cathode for sodium-ion batteries: Structural and electrochemical characterizations. Electrochimica Acta, 2019, 325, 134926.	5.2	10
627	Elevated-temperature high-strength h-BN-doped Al2014 and Al7075 composites: Experimental and theoretical insights. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140969.	5.6	10
628	Delaminated V ₂ C MXene Nanostructures Prepared via LiF Salt Etching for Electrochemical Applications. ACS Applied Nano Materials, 2022, 5, 12117-12125.	5.0	10
629	Facile nanocoating method: From B-doped to BN-coated one-dimensional nanostructures. Applied Physics Letters, 2004, 85, 106-108.	3.3	9
630	Magnetic nanocablesâ€"Silicon carbide sheathed with iron-oxide-doped amorphous silica. Applied Physics Letters, 2006, 88, 043105.	3.3	9

#	Article	IF	Citations
631	Transformation of ionic liquid into carbon nanotubes in confined nanospace. Chemical Communications, 2011, 47, 10368.	4.1	9
632	Triple‥olked ZnO/CdS Hollow Spheres for Semiconductorâ€Sensitized Solar Cells. Particle and Particle Systems Characterization, 2014, 31, 757-762.	2.3	9
633	Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy, 2018, 194, 108-116.	1.9	9
634	Exploring Aluminumâ€lon Insertion into Magnesiumâ€Doped Manjiroite (MnO ₂) Nanorods in Aqueous Solution. ChemElectroChem, 2021, 8, 1048-1054.	3.4	9
635	Facile Hydrothermal Synthesis, Field Emission and Electrochemical Properties of V ₂ O ₅ and <1> \hat{I}^2 1 -AgVO ₃ Nanobelts. Science of Advanced Materials, 2010, 2, 407-412.	0.7	9
636	Effects of strain-rate and ageing at 573 and 973 K on the mechanical (compressive) behaviour of ã€^110〉 oriented (â€~soft') NiAl single crystals with and without microalloying additions of Ti, Zr, and Hf. II. Intermetallics, 1996, 4, 253-271.	3.9	8
637	Novel unconventional inorganic nanowires: fabrication, structural analysis and electrical property evaluation. Applied Physics A: Materials Science and Processing, 2006, 85, 265-270.	2.3	8
638	Role of Dimethyl Sulfoxide in the Hydrolytic Peeling of Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2009, 113, 15565-15568.	3.1	8
639	Heteroepitaxial Growth of ZnO Nanorod Arrays on GaAs (111) Substrates by Electrochemical Deposition. European Journal of Inorganic Chemistry, 2010, 2010, 4339-4343.	2.0	8
640	Preparation and Field-Emission of TaSe2 Nanobelt Quasi-Arrays, and Electrical Transport of Its Individual Nanobelt. Journal of Nanoscience and Nanotechnology, 2011, 11, 10123-10129.	0.9	8
641	Transmission electron microscope as an ultimate tool for nanomaterial property studies. Microscopy (Oxford, England), 2013, 62, 157-175.	1.5	8
642	Facile and Mild Strategy Toward Biopolymer-Coated Boron Nitride Nanotubes via a Glycine-Assisted Interfacial Process. Journal of Physical Chemistry C, 0, , 130911093342002.	3.1	8
643	Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope. Nanoscale, 2018, 10, 8099-8105.	5.6	8
644	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 4974-4980.	9.1	8
645	Microporous materials formed via intercalation of ultrathin coordination polymers in a layered silicate. Nano Energy, 2019, 59, 162-168.	16.0	8
646	Enriched pseudocapacitive lithium storage in electrochemically activated carbonaceous vanadium(<scp>iv</scp> , <scp>v</scp>) oxide hydrate. Journal of Materials Chemistry A, 2020, 8, 13183-13196.	10.3	8
647	Na _{0.67} Mn _(1â€<i>x</i>) Fe _{<i>x</i>} O ₂ Compounds as Highâ€Capacity Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 508-516.	3.4	8
648	Backâ€Integration of Recovered Graphite from Wasteâ€Batteries as Ultraâ€High Capacity and Stable Anode for Potassiumâ€Ion Battery. Batteries and Supercaps, 2022, 5, .	4.7	8

#	Article	IF	CITATIONS
649	The effect of manganese on magnetic properties and atomic and electronic structure of NiAl intermetallic compounds. Intermetallics, 1994, 2, 147-153.	3.9	7
650	Irreversible Pressure-Induced Transformation of Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1810-1814.	0.9	7
651	Uniform, thin and continuous graphitic carbon tubular coatings on CdS nanowires. Journal of Materials Chemistry, 2009, 19, 1093.	6.7	7
652	Ferromagnetic Fe@CaS Nanopeapods with Protecting BN Tubular Sheaths. Journal of Physical Chemistry C, 2009, 113, 14818-14822.	3.1	7
653	Inorganically filled carbon nanotubes: Synthesis and properties. Pure and Applied Chemistry, 2010, 82, 2097-2109.	1.9	7
654	Single-crystal MgS nanotubes: synthesis and properties. CrystEngComm, 2010, 12, 1286-1289.	2.6	7
655	Triangular ZnO Nanosheets: Synthesis, Crystallography and Cathodoluminescence. Journal of Nanoscience and Nanotechnology, 2013, 13, 5744-5749.	0.9	7
656	Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculations. Physica Status Solidi (B): Basic Research, 2015, 252, 1725-1730.	1.5	7
657	Functionalization of boron nitride nanotubes for applications in nanobiomedicine., 2016,, 17-40.		7
658	Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation. Catalysis Science and Technology, 2019, 9, 6460-6470.	4.1	7
659	Crystallography-derived optoelectronic and photovoltaic properties of CsPbBr3 perovskite single crystals as revealed by in situ transmission electron microscopy. Applied Materials Today, 2020, 20, 100788.	4.3	7
660	Structure and yield strength of directionally solidified Ni3Al intermetallic premelted with MoSi2 phase. Intermetallics, 1999, 7, 109-114.	3.9	6
661	Synthesis and photoluminescence of amorphous silicon nitride/silica coaxial nanotubes. Chemical Physics Letters, 2004, 393, 128-131.	2.6	6
662	High-pressure effects on boron nitride multi-walled nanotubes: An X-ray diffraction study. Chemical Physics Letters, 2008, 466, 205-208.	2.6	6
663	Spatially resolved cathodoluminescence of individual BN-coated CaS:Eu nanowires. Nanoscale, 2011, 3, 598-602.	5.6	6
664	Photodetectors: Ultrathin SnSe2Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8119-8119.	21.0	6
665	Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by <i>in situ </i> i>TEM. Nanotechnology, 2015, 26, 465705.	2.6	6
666	Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope. Applied Physics Letters, 2015, 107, 091103.	3.3	6

#	Article	IF	CITATIONS
667	In situ cyclic telescoping of multi-walled carbon nanotubes in a transmission electron microscope. Carbon, 2016, 107, 225-232.	10.3	6
668	Nanometer-scale mapping of defect-induced luminescence centers in cadmium sulfide nanowires. Applied Physics Letters, 2017, 110, .	3.3	6
669	Dually-functionalized boron nitride nanotubes to target glioblastoma multiforme. Materials Today Chemistry, 2020, 16, 100270.	3.5	6
670	Multi-and Single-Walled Boron Nitride Nanotubes Produced From Carbon Nanotubes by a Substitution Reaction. Materials Research Society Symposia Proceedings, 1999, 593, 27.	0.1	5
671	Silica Fibers with Triangular Cross Sections. Advanced Materials, 2006, 18, 1852-1856.	21.0	5
672	Theoretical aspects of WS ₂ nanotube chemical unzipping. Nanoscale, 2014, 6, 8400-8404.	5.6	5
673	Length Fractionation of Boron Nitride Nanotubes Using Creamed Oil-in-Water Emulsions. Langmuir, 2014, 30, 1735-1740.	3. 5	5
674	Boron nitride nanotubes as drug carriers. , 2016, , 79-94.		5
675	Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope. Nano Letters, 2020, 20, 2279-2287.	9.1	5
676	Diameter, strength and resistance tuning of double-walled carbon nanotubes in a transmission electron microscope. Carbon, 2020, 160, 98-106.	10.3	5
677	Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Applied Catalysis B: Environmental, 2021, 292, 120212.	20.2	5
678	Sonochemical Synthesis of Ga/ZnO Nanomaterials from a Liquid Metal for Photocatalytic Applications. Advanced Sustainable Systems, 2022, 6, 2100312.	5.3	5
679	Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4159-4169.	5.1	5
680	Functional boron nitride nanotubes. , 2010, , .		4
681	Electron-beam induced electric-hydraulic expansion in a silica-shelled gallium microball-nanotube structure. Applied Physics Letters, 2011, 99, 083112.	3.3	4
682	Effect of Electron Beam Irradiation and Heating on the Structural Stability of Sulphide-Filled Carbon Nanotubes. Microscopy and Microanalysis, 2012, 18, 77-78.	0.4	4
683	Fabrication, characterization, cathodoluminescence, and field-emission properties of silica (SiO2) nanostructures. Materials Characterization, 2012, 73, 81-88.	4.4	4
684	Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by <i>in situ</i> transmission electron microscopy. Nanoscale Advances, 2019, 1, 1784-1790.	4.6	4

#	Article	IF	Citations
685	Optomechanical Properties of MoSe ₂ Nanosheets as Revealed by <i>In Situ</i> Transmission Electron Microscopy. Nano Letters, 2022, 22, 673-679.	9.1	4
686	Origin of Coproduced Boron Nitride and Carbon Helical Conical Fibers. Crystal Growth and Design, 2011, 11, 3141-3148.	3.0	3
687	Cubic Lattice Nanosheets: Thickness-Driven Light Emission. ACS Nano, 2014, 8, 6516-6519.	14.6	3
688	Electrical Characteristics: High-Performance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4Nanowire (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 804-804.	14.9	3
689	Tunable Mechanical and Electrical Properties of Coaxial BN Nanotubes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800576.	2.4	3
690	Synthesis of BN Nanotubes in a Laser Heated DAC Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1057-1059.	0.0	3
691	Effects of stoichiometry, microalloying and aging heat treatments on the compressive behavior of NiAl alloys. Scripta Materialia, 1997, 36, 1461-1466.	5.2	2
692	Open nanotubes of insulating boron nitride. AIP Conference Proceedings, 2001, , .	0.4	2
693	Corrigendum to "Synthesis of carbon nanotubes below room temperature― Carbon, 2001, 39, 787.	10.3	2
694	Synthesis and microstructure of Cd4SiS6/Si composite nanowires. Journal of Electron Microscopy, 2005, 54, 485-491.	0.9	2
695	Twinning in ultrathin silicon nanowires. International Journal of Materials Research, 2006, 97, 513-516.	0.3	2
696	Boron Nitride Nanotubes: Recent Breakthroughs and Challenges. ECS Transactions, 2007, 11, 15-21.	0.5	2
697	Fabrication of Core/Shell Ge/SiO ₂ and Ge/CdS Nanospheres. Journal of Nanoscience and Nanotechnology, 2009, 9, 572-576.	0.9	2
698	Graphene Ingestion and Regrowth on "Carbon-Starved―Metal Electrodes. ACS Nano, 2017, 11, 10575-10582.	14.6	2
699	Development of Nanoscale Thermocouple Probes for Local Thermal Measurements. E-Journal of Surface Science and Nanotechnology, 2019, 17, 102-107.	0.4	2
700	Laser Heating of Boron Nitride and Graphite in a Diamond Anvil Cell. Materials Research Society Symposia Proceedings, 1997, 499, 321.	0.1	1
701	Boron Nitride Nanotube, Nanocable and Nanocone. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
702	Metal-Filled Boron Nitride Nanotubes. AIP Conference Proceedings, 2002, , .	0.4	1

#	Article	IF	Citations
703	Metal-filled Nanotubes: Synthesis, Analysis, Properties and Applications. AIP Conference Proceedings, 2004, , .	0.4	1
704	Publisher's Note: Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization [Phys. Rev. B74, 153413 (2006)]. Physical Review B, 2006, 74, .	3.2	1
705	IN-SITU TEM OF FILLED NANOTUBES: HEATING, ELECTRON IRRADIATION, ELECTRICAL AND MECHANICAL PROBING. , 2008, , 187-227.		1
706	In-situ TEM electrical and mechanical properties measurements of one-dimensional inorganic nanomaterials. , 2008, , .		1
707	Mechanics of Turbostratic Carbon Nanotubes Filled with Ga-Doped ZnS. Materials Science Forum, 0, 636-637, 665-670.	0.3	1
708	FORMATION OF NANOCLUSTERS IN EXPANDING LASER PLUME. International Journal of Nanoscience, 2010, 09, 371-375.	0.7	1
709	Nanowires: Bandgap-Graded CdSxSe1-xNanowires for High-Performance Field-Effect Transistors and Solar Cells (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1082-1082.	21.0	1
710	Photodetectors: Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms (Adv. Mater. 19/2014). Advanced Materials, 2014, 26, 3087-3087.	21.0	1
711	Interface engineering of bio-inspired Boron nitride nano-architectures toward controllable hydrophobicity/hydrophilicity., 2015, , .		1
712	Development of thermoelectric thin films and characterization methods. Journal of Physics: Conference Series, 2019, 1407, 012055.	0.4	1
713	Electron Microscopy of Boron Nitride Nanotubes. , 2003, , 221-250.		1
714	In Situ TEM Electrical and Mechanical Probing of Individual Multi-walled Boron Nitride Nanotubes. Topics in Applied Physics, 2010, , 275-286.	0.8	1
715	Structural Changes of BN Nanotubes Irradiated by Al Ions. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 87-90.	0.5	1
716	Nanoboron Nitrides., 2015,, 3-32.		1
717	Multi- and Single-Walled Nanotubes in the B-C-N System Studied by HRTEM and EELS. Microscopy and Microanalysis, 2000, 6, 50-51.	0.4	0
718	Nanotubes of Magnesium Borate ChemInform, 2003, 34, no.	0.0	0
719	Direct Pyrolysis Method for Superconducting Crystalline MgB2 Nanowires ChemInform, 2003, 34, no.	0.0	0
720	Synthesis, structural and chemical analysis, and electrical property measurements of compound nanotubes in the B-C-N system. AIP Conference Proceedings, 2003, , .	0.4	0

#	Article	IF	Citations
721	Discovery Of Carbon Nanothermometer. Microscopy and Microanalysis, 2003, 9, 318-319.	0.4	0
722	Structure and Property of Boron Nitride Nanotubes. Tanso, 2003, 2003, 14-20.	0.1	0
723	New Boron Nitride Whiskers: Showing Strong Ultraviolet and Visible Light Luminescence ChemInform, 2004, 35, no.	0.0	0
724	Growth of Single-Crystalline Cubic GaN Nanotubes with Rectangular Cross-Sections ChemInform, 2004, 35, no.	0.0	0
725	Inside Front Cover: Self-Assembled Highly Faceted Wurtzite-Type ZnS Single-Crystalline Nanotubes with Hexagonal Cross-Sections (Adv. Mater. 16/2005). Advanced Materials, 2005, 17, NA-NA.	21.0	O
726	Growth of Single-Crystal Indium Nitride Nanotubes and Nanowires by a Controlled-Carbonitridation Reaction Route ChemInform, 2005, 36, no.	0.0	0
727	Metal-Filled Nanotubes: Synthesis, Analysis, Properties and Applications. ChemInform, 2005, 36, no.	0.0	0
728	Liquid Gallium Columns Sheathed with Carbon: Bulk Synthesis and Manipulation ChemInform, 2005, 36, no.	0.0	0
729	Self-Assembled Highly Faceted Wurtzite-Type ZnS Single-Crystalline Nanotubes with Hexagonal Cross-Sections ChemInform, 2005, 36, no.	0.0	0
730	Field electron emission from carbon nanotubes coated on TiSi/sub 2/ buffer layer., 0,,.		0
731	Synthesis and properties of nanotubes filled with solids, liquids and gases. , 0, , .		O
732	Silica-Shielded Ga-ZnS Metal-Semiconductor Nanowire Heterojunctions. Microscopy and Microanalysis, 2006, 12, 478-479.	0.4	0
733	Novel Synthesis and Functionalization of Boron Nitride Nanotubes. Microscopy and Microanalysis, 2006, 12, 496-497.	0.4	0
734	Synthesis and Property of Nanostructured ZnS. Microscopy and Microanalysis, 2009, 15, 1158-1159.	0.4	0
735	Electrical and mechanical probing of nanostructures with transmission electron microscopy. Microscopy and Microanalysis, 2009, 15, 47-48.	0.4	0
736	Single-crystalline ZnS nanobelts with sharp ultraviolet (UV) emission at room temperature as UV-light sensors. , 2010, , .		0
737	Structural characterization and cathodoluminescence of individual BN layers-sheathed CaS:Eu nanowires. , 2010, , .		0
738	Structural characterization and field emission of stacked-cone GaN nanorods. , 2010, , .		0

#	Article	IF	Citations
739	Characterization, cathodoluminescence and field-emission properties of morphology-tunable CdS micro/nanostructures. , 2010, , .		O
740	Nanotubes: Tube-in-Tube TiO2 Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties (Small 4/2011). Small, 2011, 7, 444-444.	10.0	0
741	Synthesis and Property of BN Nanotubes and Nanosheetes. Hyomen Kagaku, 2012, 33, 569-574.	0.0	0
742	First in-situ TEM Studies of Young Modulus and Elastic Properties of individual and bundled Single-Walled BN nanotubes. Microscopy and Microanalysis, 2012, 18, 750-751.	0.4	0
743	In situ TEM measurements of nanotube and nanosheet properties. Microscopy and Microanalysis, 2012, 18, 1542-1543.	0.4	0
744	Anodic Alumina Membrane Template and Its Derivative Membrane Nanostructures., 2012,,.		0
745	Nonwetting behavior of & nonwetting behavior of & nonwetting behavior of warp; #x201C; white amp; #x201D; graphene coatings., 2012,,.		0
746	Solar Cells: Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells (Part.) Tj ETQq0 0 0	rgBT/Ovei	rlogk 10 Tf 50
747	Dispersion and Functionalization of Boron Nitride Nanotubes in Aqueous Solution. Nippon Gomu Kyokaishi, 2015, 88, 447-453.	0.0	0
748	Surface Phonon Coupling within Boron Nitride Nanotubes Resolved by a Novel Near-Field Infrared Pump-Probe Imaging Technique Microscopy and Microanalysis, 2016, 22, 366-367.	0.4	0
749	Surface phonon coupling within boron nitride resolved by a novel near-field infrared pump-probe imaging technique. Proceedings of SPIE, 2016, , .	0.8	0
750	Cathodoluminescence Mapping of Defect Regions in Cadmium Sulfide Nanowires. Microscopy and Microanalysis, 2017, 23, 1696-1697.	0.4	0
751	Kinking effects and transport properties of coaxial BN-C nanotubes as revealed by in situ transmission electron microscopy and theoretical analysis. APL Materials, 2019, 7, 101118.	5.1	0
752	Exploring Aluminumâ€lon Insertion into Magnesiumâ€Doped Manjiroite (MnO 2) Nanorods in Aqueous Solution. ChemElectroChem, 2021, 8, 995-995.	3.4	0
753	Synthesis, Analysis, Transport and Field emission Measurements of Compound B-C-N Nanotubes. Materials Research Society Symposia Proceedings, 2003, 772, 761.	0.1	0
754	3 Controlled Nanocolumnar Arrays. , 2012, , 175-183.		0
755	Anodic Alumina Membrane Template and Its Derivative Membrane Nanostructures. , 2012, , 109-143.		0
756	Nanocolumnar Arrays by Pulsed Laser Deposition on Polystyrene Colloid Spheres., 2012,, 145-166.		0

#	Article	IF	CITATIONS
757	Seed-Assisted Growth of One-Dimensional Nanostructures. , 2012, , 1-36.		O
758	In Situ TEM Investigations of the Interface Behavior Between Carbon Nanotubes and Metals. , 2012, , 345-374.		0
759	One-Dimensional Inorganic Semiconductor Nanostructures. , 2012, , 37-70.		O
760	Structure and composition analysis of nanotubes and ceramics by a new 300 kV energy-filtered FEGTEM., 2018,, 83-90.		0
761	<i>A Special Section on</i> Nanospace and Nanoarchitectonics. Journal of Nanoscience and Nanotechnology, 2020, 20, 5151-5152.	0.9	O
762	Electrical and mechanical property studies on individual low-dimensional inorganic nanostructures in HRTEM., 2008, , 115-116.		0
763	Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes. Journal of Polymer Science, 2022, 60, 233-243.	3.8	O
764	Erosion Resistance of Iron-Boron Nitride Composite Plating to Molten Lead-Free Solder. Materials Transactions, 2022, , .	1.2	0