Nathalie Cartier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Memantine in AAV-AD Rat: A Model of Late-Onset Alzheimer's Disease Predementia. journal of prevention of Alzheimer's disease, The, 2022, 9, 338-347.	2.7	3
2	Hematopoietic stem cell transplantation chemotherapy causes microglia senescence and peripheral macrophage engraftment in the brain. Nature Medicine, 2022, 28, 517-527.	30.7	32
3	Genetically modified macrophages accelerate myelin repair. EMBO Molecular Medicine, 2022, 14, .	6.9	9
4	The Challenge of Gene Therapy for Neurological Diseases: Strategies and Tools to Achieve Efficient Delivery to the Central Nervous System. Human Gene Therapy, 2021, 32, 349-374.	2.7	21
5	Complete Correction of Brain and Spinal Cord Pathology in Metachromatic Leukodystrophy Mice. Frontiers in Molecular Neuroscience, 2021, 14, 677895.	2.9	10
6	Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Frontiers in Aging Neuroscience, 2021, 13, 696778.	3.4	43
7	Intra-CSF AAV9 and AAVrh10 Administration in Nonhuman Primates: Promising Routes and Vectors for Which Neurological Diseases?. Molecular Therapy - Methods and Clinical Development, 2020, 17, 771-784.	4.1	53
8	The cholesterol 24-hydroxylase activates autophagy and decreases mutant huntingtin build-up in a neuroblastoma culture model of Huntington's disease. BMC Research Notes, 2020, 13, 210.	1.4	10
9	CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington's disease. Brain, 2019, 142, 2432-2450.	7.6	71
10	Real-Time Monitoring of Exosome Enveloped-AAV Spreading by Endomicroscopy Approach: A New Tool for Gene Delivery in the Brain. Molecular Therapy - Methods and Clinical Development, 2019, 14, 237-251.	4.1	35
11	Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathologica, 2019, 138, 837-858.	7.7	53
12	Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathologica Communications, 2019, 7, 46.	5.2	31
13	βAPP Processing Drives Gradual Tau Pathology in an Age-Dependent Amyloid Rat Model of Alzheimer's Disease. Cerebral Cortex, 2018, 28, 3976-3993.	2.9	13
14	Transient increase in sAPPα secretion in response to Aβ1–42 oligomers: an attempt of neuronal self-defense?. Neurobiology of Aging, 2018, 61, 23-35.	3.1	6
15	Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice. Brain, 2017, 140, aww330.	7.6	99
16	Reply: Beneficial effect of interleukin-2-based immunomodulation in Alzheimer-like pathology. Brain, 2017, 140, e40-e40.	7.6	25
17	Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Human Gene Therapy, 2017, 28, 988-1003.	2.7	82
18	Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis, Frontiers in Molecular Neuroscience, 2017, 10, 211	2.9	25

NATHALIE CARTIER

#	Article	IF	CITATIONS
19	Prevalence of pulmonary tuberculosis among prison inmates: A cross-sectional survey at the Correctional and Detention Facility of Abidjan, Côte d'Ivoire. PLoS ONE, 2017, 12, e0181995.	2.5	18
20	Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Scientific Reports, 2016, 6, 28272.	3.3	23
21	Hopes, Promises, and Future Directions of Gene and Cell Therapies in France. Human Gene Therapy, 2016, 27, 96-97.	2.7	2
22	Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Molecular Neurodegeneration, 2016, 11, 58.	10.8	9
23	Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Human Gene Therapy, 2016, 27, 478-496.	2.7	221
24	Alzheimer's disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Molecular Neurodegeneration, 2016, 11, 5.	10.8	37
25	CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain, 2016, 139, 953-970.	7.6	135
26	Gene Therapy Strategies for Alzheimer's Disease: An Overview. Human Gene Therapy, 2016, 27, 100-107.	2.7	34
27	Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathologica, 2016, 131, 247-266.	7.7	131
28	The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. Journal of Neuroscience, 2015, 35, 16018-16033.	3.6	67
29	CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease. Brain, 2015, 138, 2383-2398.	7.6	163
30	Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus. European Journal of Neuroscience, 2015, 41, 1345-1355.	2.6	26
31	Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Human Molecular Genetics, 2015, 24, 5965-5976.	2.9	96
32	Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer's disease early phenotypes. Molecular Neurodegeneration, 2014, 9, 60.	10.8	76
33	Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nature Medicine, 2014, 20, 542-547.	30.7	184
34	The role of microglia in human disease: therapeutic tool or target?. Acta Neuropathologica, 2014, 128, 363-380.	7.7	120
35	Correction of Brain Oligodendrocytes by AAVrh.10 Intracerebral Gene Therapy in Metachromatic Leukodystrophy Mice. Human Gene Therapy, 2012, 23, 903-914.	2.7	73
36	Lentiviral Hematopoietic Cell Gene Therapy for X-Linked Adrenoleukodystrophy. Methods in Enzymology, 2012, 507, 187-198.	1.0	100

NATHALIE CARTIER

#	Article	IF	CITATIONS
37	Bioinformatic Clonality Analysis of Next-Generation Sequencing-Derived Viral Vector Integration Sites. Human Gene Therapy Methods, 2012, 23, 111-118.	2.1	43
38	Gene therapy for leukodystrophies. Human Molecular Genetics, 2011, 20, R42-R53.	2.9	83
39	Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood, 2011, 117, 5332-5339.	1.4	201
40	Mouse Models of Metachromatic Leukodystrophy and Adrenoleukodystrophy. Neuromethods, 2011, , 493-513.	0.3	4
41	Hematopoietic Stem Cell Gene Therapy with Lentiviral Vector in X-Linked Adrenoleukodystrophy. Blood, 2011, 118, 163-163.	1.4	0
42	Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X‣inked Adrenoleukodystrophy. Brain Pathology, 2010, 20, 857-862.	4.1	116
43	Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 2010, 467, 318-322.	27.8	1,153
44	Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Human Molecular Genetics, 2010, 19, 2005-2014.	2.9	90
45	Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Human Molecular Genetics, 2010, 19, 147-158.	2.9	67
46	Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease. Molecular Therapy, 2010, 18, 44-53.	8.2	166
47	Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy. Science, 2009, 326, 818-823.	12.6	1,368
48	Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Therapy, 2007, 14, 405-414.	4.5	53
49	Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Human Molecular Genetics, 2006, 15, 53-64.	2.9	80
50	225. Phenotypic Correction of ALD Mouse after Hematopoietic Cell Transplantation and Evaluation of Hematopoietic Stem Cell Gene Therapy with a Lentivirus Vector. Molecular Therapy, 2004, 9, S87.	8.2	0
51	Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3557-3562.	7.1	150
52	Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2(rAAV2) particle assembly using stable producer cell lines. Journal of Gene Medicine, 2004, 6, 555-564.	2.8	28
53	Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Molecular Therapy, 2003, 7, 317-324.	8.2	57
54	Simvastatin does not normalize very long chain fatty acids in adrenoleukodystrophy mice. FEBS Letters, 2000, 478, 205-208.	2.8	23

NATHALIE CARTIER

#	Article	IF	CITATIONS
55	Homo- and Heterodimerization of Peroxisomal ATP-binding Cassette Half-transporters. Journal of Biological Chemistry, 1999, 274, 32738-32743.	3.4	121
56	Retroviral-mediated adrenoleukodystrophy-related gene transfer corrects very long chain fatty acid metabolism in adrenoleukodystrophy fibroblasts: implications for therapy. FEBS Letters, 1999, 448, 261-264.	2.8	46
57	Retroviral Transfer and Long-Term Expression of the Adrenoleukodystrophy Gene in Human CD34+Cells. Human Gene Therapy, 1998, 9, 1025-1036.	2.7	38
58	Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Molecular Brain Research, 1996, 38, 45-53.	2.3	117
59	Retroviral-mediated gene transfer corrects very-long-chain fatty acid metabolism in adrenoleukodystrophy fibroblasts Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1674-1678.	7.1	103
60	Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Research, 1994, 638, 221-226.	2.2	184
61	A Two-Year Trial of Oleic and Erucic Acids ("Lorenzo's Oilâ€) as Treatment for Adrenomyeloneuropathy. New England Journal of Medicine, 1993, 329, 745-752.	27.0	229
62	Abnormal messenger RNA expression and a missense mutation in patients with X-linked adrenoleukodystrophy. Human Molecular Genetics, 1993, 2, 1949-1951.	2.9	58
63	Gene expression in hepatocyte-like lines established by targeted carcinogenesis in transgenic mice. Experimental Cell Research, 1992, 200, 175-185.	2.6	54
64	Deficiency of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase: A Cause of Lethal Myopathy and Cardiomyopathy in Early Childhood. Pediatric Research, 1990, 28, 657-662.	2.3	117