## Suphansa Sawamiphak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281485/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 2010, 464, 601-605.                                                                                                                             | 27.8 | 965       |
| 2  | Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010,<br>464, 108-111.                                                                                                                   | 27.8 | 885       |
| 3  | Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development<br>(Cambridge), 2005, 132, 5199-5209.                                                                                                   | 2.5  | 742       |
| 4  | Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genetics, 2002, 31, 106-110.                                                                                                                   | 21.4 | 551       |
| 5  | Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Developmental Dynamics, 2007, 236, 1025-1035.                                                                                                    | 1.8  | 456       |
| 6  | Foxn4 directly regulates <i>tbx2b</i> expression and atrioventricular canal formation. Genes and Development, 2008, 22, 734-739.                                                                                                       | 5.9  | 339       |
| 7  | Extensive Conversion of Hepatic Biliary Epithelial Cells to Hepatocytes After Near Total Loss of<br>Hepatocytes in Zebrafish. Gastroenterology, 2014, 146, 776-788.                                                                    | 1.3  | 190       |
| 8  | A molecular mechanism for Wnt ligand-specific signaling. Science, 2018, 361, .                                                                                                                                                         | 12.6 | 169       |
| 9  | Interferon Gamma Signaling Positively Regulates Hematopoietic Stem Cell Emergence. Developmental<br>Cell, 2014, 31, 640-653.                                                                                                           | 7.0  | 158       |
| 10 | Use of three-dimensional organoids and lung-on-a-chip methods to study lung development,<br>regeneration and disease. European Respiratory Journal, 2018, 52, 1800876.                                                                 | 6.7  | 96        |
| 11 | Immune responses in cardiac repair and regeneration: a comparative point of view. Cellular and<br>Molecular Life Sciences, 2019, 76, 1365-1380.                                                                                        | 5.4  | 96        |
| 12 | Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium. Developmental Cell, 2019, 50, 247-255.e3.                                                                                                                              | 7.0  | 94        |
| 13 | Coronary Revascularization During Heart Regeneration Is Regulated by Epicardial and Endocardial<br>Cues and Forms a Scaffold for Cardiomyocyte Repopulation. Developmental Cell, 2019, 51, 503-515.e4.                                 | 7.0  | 89        |
| 14 | AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration. Circulation Research, 2020, 126, 1760-1778.                                             | 4.5  | 87        |
| 15 | Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae<br>in the Zebrafish Notochord. Current Biology, 2017, 27, 1982-1989.e3.                                                             | 3.9  | 83        |
| 16 | Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovascular Research,<br>2014, 104, 49-60.                                                                                                                | 3.8  | 67        |
| 17 | Actin Binding GFP Allows 4D In Vivo Imaging of Myofilament Dynamics in the Zebrafish Heart and the<br>Identification of Erbb2 Signaling as a Remodeling Factor of Myofibril Architecture. Circulation<br>Research, 2014, 115, 845-856. | 4.5  | 59        |
| 18 | InÂVivo Visualization of Cardiomyocyte Apicobasal Polarity Reveals Epithelial to Mesenchymal-like<br>Transition during Cardiac Trabeculation. Cell Reports, 2016, 17, 2687-2699.                                                       | 6.4  | 53        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pituicyte Cues Regulate the Development of Permeable Neuro-Vascular Interfaces. Developmental Cell, 2018, 47, 711-726.e5.                                                             | 7.0  | 53        |
| 20 | Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression.<br>Developmental Biology, 2017, 424, 147-161.                                             | 2.0  | 49        |
| 21 | Focal adhesions are essential to drive zebrafish heart valve morphogenesis. Journal of Cell Biology, 2019, 218, 1039-1054.                                                            | 5.2  | 47        |
| 22 | Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Developmental Biology, 2016, 411, 115-127. | 2.0  | 46        |
| 23 | Bone morphogenetic protein signaling governs biliaryâ€driven liver regeneration in zebrafish through<br>tbx2b and id2a. Hepatology, 2017, 66, 1616-1630.                              | 7.3  | 42        |
| 24 | Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circulation Research, 2020, 127, 896-907.                                                              | 4.5  | 37        |
| 25 | Cyclopropane Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and<br>Mycobacterial Growth through Vegf Signaling. Cell Host and Microbe, 2018, 24, 514-525.e6.      | 11.0 | 34        |
| 26 | Thyroid Hormone Coordinates Pancreatic Islet Maturation During the Zebrafish Larval-to-Juvenile<br>Transition to Maintain Glucose Homeostasis. Diabetes, 2017, 66, 2623-2635.         | 0.6  | 33        |
| 27 | Mir-126 is a conserved modulator of lymphatic development. Developmental Biology, 2018, 437, 120-130.                                                                                 | 2.0  | 33        |
| 28 | TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish.<br>Developmental Cell, 2020, 52, 9-20.e7.                                             | 7.0  | 31        |
| 29 | Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish.<br>Circulation Research, 2020, 126, 968-984.                                               | 4.5  | 27        |
| 30 | Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. Science Advances, 2021, 7, eabg6497.                                | 10.3 | 27        |
| 31 | Organ Function as a Modulator of Organ Formation. Current Topics in Developmental Biology, 2016, 117, 417-433.                                                                        | 2.2  | 25        |
| 32 | Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish.<br>Developmental Biology, 2019, 454, 21-28.                                        | 2.0  | 25        |
| 33 | Wnt∫î²â€€atenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology, 2018, 67, 2352-2366.                                 | 7.3  | 21        |
| 34 | Genetics in Light of Transcriptional Adaptation. Trends in Genetics, 2020, 36, 926-935.                                                                                               | 6.7  | 21        |
| 35 | Genotype–Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic<br>Robustness. Annual Review of Genetics, 2021, 55, 71-91.                                  | 7.6  | 21        |
| 36 | Transient cardiomyocyte fusion regulates cardiac development in zebrafish. Nature Communications, 2017, 8, 1525.                                                                      | 12.8 | 20        |

Suphansa Sawamiphak

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell<br>development. Developmental Biology, 2021, 479, 11-22.                    | 2.0  | 19        |
| 38 | On the development of the hepatopancreatic ductal system. Seminars in Cell and Developmental Biology, 2017, 66, 69-80.                                                      | 5.0  | 16        |
| 39 | Whole-Organism Chemical Screening Identifies Modulators of Pancreatic β-Cell Function. Diabetes, 2018, 67, 2268-2279.                                                       | 0.6  | 15        |
| 40 | Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse<br>tracheal tubulogenesis. European Respiratory Journal, 2019, 53, 1800840.    | 6.7  | 15        |
| 41 | Hhex regulates the specification and growth of the hepatopancreatic ductal system. Developmental Biology, 2020, 458, 228-236.                                               | 2.0  | 15        |
| 42 | Early-Life Stress Regulates Cardiac Development through an IL-4-Glucocorticoid Signaling Balance.<br>Cell Reports, 2020, 33, 108404.                                        | 6.4  | 14        |
| 43 | A Vegfc-Emilin2a-Cxcl8a Signaling Axis Required for Zebrafish Cardiac Regeneration. Circulation Research, 2022, 130, 1014-1029.                                             | 4.5  | 14        |
| 44 | ld4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development. Developmental Biology, 2016, 412, 71-82. | 2.0  | 13        |
| 45 | Innervation modulates the functional connectivity between pancreatic endocrine cells. ELife, 2022, 11, .                                                                    | 6.0  | 11        |
| 46 | Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036.                                                                        | 2.5  | 10        |
| 47 | Pushing Yap into the Nucleus with Shear Force. Developmental Cell, 2017, 40, 517-518.                                                                                       | 7.0  | 8         |
| 48 | Tie1 regulates zebrafish cardiac morphogenesis through Tolloid-like 1 expression. Developmental<br>Biology, 2021, 469, 54-67.                                               | 2.0  | 6         |
| 49 | Cardiomyocyte heterogeneity during zebrafish development and regeneration. Developmental Biology, 2021, 476, 259-271.                                                       | 2.0  | 6         |
| 50 | New insights into benzo[âº]pyrene osteotoxicity in zebrafish. Ecotoxicology and Environmental Safety, 2021, 226, 112838.                                                    | 6.0  | 6         |
| 51 | Heart development and regeneration—a multiâ€organ effort. FEBS Journal, 2023, 290, 913-930.                                                                                 | 4.7  | 5         |
| 52 | The E3 ubiquitin-protein ligase Rbx1 regulates cardiac wall morphogenesis in zebrafish. Developmental<br>Biology, 2021, 480, 1-12.                                          | 2.0  | 3         |
| 53 | It takes muscle to make blood cells. Nature, 2014, 512, 257-258.                                                                                                            | 27.8 | 1         |