
Mary Munson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281213/publications.pdf Version: 2024-02-01

MARY MUNSON

#	Article	IF	CITATIONS
1	Dissecting the Structural Dynamics of the Nuclear Pore Complex. Molecular Cell, 2021, 81, 153-165.e7.	9.7	31
2	Rabâ€E and its interaction with myosin XI are essential for polarised cell growth. New Phytologist, 2021, 229, 1924-1936.	7.3	13
3	Activation of the Exocyst Tethering Complex for SNARE Complex Regulation and Membrane Fusion. FASEB Journal, 2021, 35, .	0.5	0
4	Introduction. Protein Science, 2020, 29, 1255-1257.	7.6	1
5	Membrane trafficking: vesicle formation, cargo sorting and fusion. Molecular Biology of the Cell, 2020, 31, 399-400.	2.1	2
6	Integrative structure and function of the yeast exocyst complex. Protein Science, 2020, 29, 1486-1501.	7.6	29
7	Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. Journal of Cell Biology, 2020, 219, .	5.2	32
8	Retro Is Cool: Structure of the Versatile Retromer Complex. Structure, 2020, 28, 387-389.	3.3	1
9	SNARE complex assembly and disassembly. Current Biology, 2018, 28, R397-R401.	3.9	116
10	Exposing the Elusive Exocyst Structure. Trends in Biochemical Sciences, 2018, 43, 714-725.	7.5	58
11	A novel homozygous <i>VPS45</i> p.P468L mutation leading to severe congenital neutropenia with myelofibrosis. Pediatric Blood and Cancer, 2017, 64, e26571.	1.5	14
12	Getting mRNA-Containing Ribonucleoprotein Granules Out of a Nuclear Back Door. Neuron, 2017, 96, 604-615.	8.1	12
13	Capturing endosomal vesicles at the Golgi. Nature Cell Biology, 2017, 19, 1384-1386.	10.3	3
14	The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathogens, 2017, 13, e1006063.	4.7	27
15	The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation. Frontiers in Cell and Developmental Biology, 2016, 4, 42.	3.7	43
16	Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nature Structural and Molecular Biology, 2016, 23, 59-66.	8.2	108
17	Synaptic-vesicle fusion: a need for speed. Nature Structural and Molecular Biology, 2015, 22, 509-511.	8.2	4
18	Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Current Opinion in Chemical Biology, 2015, 29, 66-71.	6.1	49

MARY MUNSON

#	Article	IF	CITATIONS
19	The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes. Journal of Biological Chemistry, 2015, 290, 28245-28256.	3.4	47
20	To protect or reject. ELife, 2014, 3, e03374.	6.0	0
21	Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Molecular Biology of the Cell, 2012, 23, 337-346.	2.1	98
22	Exorcising the Exocyst Complex. Traffic, 2012, 13, 898-907.	2.7	287
23	Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex. Developmental Cell, 2011, 21, 1156-1170.	7.0	140
24	Show Me the MUN-y. Structure, 2011, 19, 1348-1349.	3.3	2
25	A Cytosolic ATM/NEMO/RIP1 Complex Recruits TAK1 To Mediate the NF-κB and p38 Mitogen-Activated Protein Kinase (MAPK)/MAPK-Activated Protein 2 Responses to DNA Damage. Molecular and Cellular Biology, 2011, 31, 2774-2786.	2.3	118
26	Autoinhibition of SNARE complex assembly by a conformational switch represents a conserved feature of syntaxins. Biochemical Society Transactions, 2010, 38, 209-212.	3.4	17
27	Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces. Structure, 2010, 18, 28-38.	3.3	116
28	A mutant form of PTEN linked to autism. Protein Science, 2010, 19, 1948-1956.	7.6	34
29	The structure of the Myo4p globular tail and its function in <i>ASH1</i> mRNA localization. Journal of Cell Biology, 2010, 189, 497-510.	5.2	36
30	Sec6p Anchors the Assembled Exocyst Complex at Sites of Secretion. Molecular Biology of the Cell, 2009, 20, 973-982.	2.1	39
31	Functional homology of mammalian syntaxin 16 and yeast Tlg2p reveals a conserved regulatory mechanism. Journal of Cell Science, 2009, 122, 2292-2299.	2.0	25
32	The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14303-14308.	7.1	50
33	Tip20p reaches out to Dsl1p to tether membranes. Nature Structural and Molecular Biology, 2009, 16, 100-102.	8.2	7
34	A role for the syntaxin N-terminus. Biochemical Journal, 2009, 418, e1-e3.	3.7	17
35	Conservation of Helical Bundle Structure between the Exocyst Subunits. PLoS ONE, 2009, 4, e4443.	2.5	27
36	Vps45p—a paradigm for Sec1p/Munc18 protein function. FASEB Journal, 2009, 23, 683.5.	0.5	0

MARY MUNSON

#	Article	IF	CITATIONS
37	PTEN Phosphatase Selectively Binds Phosphoinositides and Undergoes Structural Changes. Biochemistry, 2008, 47, 2162-2171.	2.5	72
38	Tag team action at the synapse. EMBO Reports, 2007, 8, 834-838.	4.5	24
39	Regulation of the PTEN phosphatase. Gene, 2006, 374, 1-9.	2.2	168
40	The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nature Structural and Molecular Biology, 2006, 13, 555-556.	8.2	89
41	The exocyst defrocked, a framework of rods revealed. Nature Structural and Molecular Biology, 2006, 13, 577-581.	8.2	250
42	TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature, 2006, 442, 303-306.	27.8	292
43	Specific SNARE complex binding mode of the Sec1/Munc-18 protein, Sec1p. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17730-17735.	7.1	69
44	Spectroscopic characterization of PTEN/PIP2 interaction. FASEB Journal, 2006, 20, A483.	0.5	0
45	Dimerization of the Exocyst Protein Sec6p and Its Interaction with the t-SNARE Sec9p. Biochemistry, 2005, 44, 6302-6311.	2.5	93
46	Conformational Regulation of SNARE Assembly and Disassembly in Vivo. Journal of Biological Chemistry, 2002, 277, 9375-9381.	3.4	34
47	Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nature Structural Biology, 2000, 7, 894-902.	9.7	146
48	Sec1p Binds to SNARE Complexes and Concentrates at Sites of Secretion. Journal of Cell Biology, 1999, 146, 333-344.	5.2	290
49	Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Structural Biology, 1998, 5, 793-802.	9.7	193
50	De Novo Design of Protein Structure and Function. , 1998, , 313-353.		2
51	Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude. Folding & Design, 1997, 2, 77-87.	4.5	56
52	What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Science, 1996, 5, 1584-1593.	7.6	189
53	Studying α-helix and β-sheet formation in small proteins. Techniques in Protein Chemistry, 1995, 6, 323-332.	0.3	3
54	Redesigning the hydrophobic core of a fourâ€helixâ€bundle protein. Protein Science, 1994, 3, 2015-2022.	7.6	130

#	Article	IF	CITATIONS
55	ColE1-compatible vectors for high-level expression of cloned DNAs from the T7 promoter. Gene, 1994, 144, 59-62.	2.2	34