
Theodoros K Karamanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annual Review of Biophysics, 2022, 51, 223-246.	10.0	9
2	Generating Ensembles of Dynamic Misfolding Proteins. Frontiers in Neuroscience, 2022, 16, 881534.	2.8	9
3	Microsecond Backbone Motions Modulate the Oligomerization of the DNAJB6 Chaperone. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
4	Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophysical Chemistry, 2021, 268, 106505.	2.8	97
5	Finding the sweet spot for chaperone activity. Nature Chemistry, 2021, 13, 397-399.	13.6	0
6	Optimized NMR Experiments for the Isolation of I =1/2 Manifold Transitions in Methyl Groups of Proteins. ChemPhysChem, 2020, 21, 13-19.	2.1	10
7	Optimized selection of slow-relaxing 13C transitions in methyl groups of proteins: application to relaxation dispersion. Journal of Biomolecular NMR, 2020, 74, 673-680.	2.8	9
8	An S/T motif controls reversible oligomerization of the Hsp40 chaperone DNAJB6b through subtle reorganization of a β sheet backbone. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30441-30450.	7.1	23
9	Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules. Journal of the American Chemical Society, 2020, 142, 20845-20854.	13.7	19
10	Determining methyl sidechain conformations in a CS-ROSETTA model using methyl 1H-13C residual dipolar couplings. Journal of Biomolecular NMR, 2020, 74, 111-118.	2.8	4
11	Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nature Communications, 2020, 11, 2155.	12.8	48
12	Magicâ€Angleâ€Pulse Driven Separation of Degenerate 1 H Transitions in Methyl Groups of Proteins: Application to Studies of Methyl Axis Dynamics. ChemPhysChem, 2020, 21, 1087-1091.	2.1	10
13	Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into Hsp40-mediated proteostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21529-21538.	7.1	62
14	Extracellular matrix components modulate different stages in β2-microglobulin amyloid formation. Journal of Biological Chemistry, 2019, 294, 9392-9401.	3.4	19
15	Structural mapping of oligomeric intermediates in an amyloid assembly pathway. ELife, 2019, 8, .	6.0	44
16	A peptideâ€display protein scaffold to facilitate single molecule force studies of aggregationâ€prone peptides. Protein Science, 2018, 27, 1205-1217.	7.6	6
17	The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 2018, 9, 4517.	12.8	124
18	Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Scientific Reports, 2016, 6, 38644.	3.3	89

#	Article	IF	CITATIONS
19	A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity. Journal of the American Chemical Society, 2016, 138, 6271-6280.	13.7	29
20	Mechanisms of amyloid formation revealed by solution NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, 88-89, 86-104.	7.5	85
21	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	7.1	95
22	Distinguishing Closely Related Amyloid Precursors Using an RNA Aptamer. Journal of Biological Chemistry, 2014, 289, 26859-26871.	3.4	7
23	Visualization of Transient Protein-Protein Interactions that Promote or Inhibit Amyloid Assembly. Molecular Cell, 2014, 55, 214-226.	9.7	55
24	Microsecond Backbone Motions Modulate the Oligomerization of the DNAJB6 Chaperone. Angewandte Chemie, 0, , .	2.0	0