Chongqing Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8280743/publications.pdf

Version: 2024-02-01

292 papers

16,869 citations

71
h-index

118 g-index

297 all docs

297 docs citations

times ranked

297

10048 citing authors

#	Article	IF	Citations
1	Physics-Constrained Robustness Evaluation of Intelligent Security Assessment for Power Systems. IEEE Transactions on Power Systems, 2023, 38, 872-884.	6.5	5
2	Open-Access Data and Toolbox for Tracking COVID-19 Impact on Power Systems. IEEE Transactions on Power Systems, 2023, 38, 1619-1631.	6.5	1
3	Estimating Demand Flexibility Using Siamese LSTM Neural Networks. IEEE Transactions on Power Systems, 2022, 37, 2360-2370.	6.5	12
4	A Novel Preheating Coordination Approach in Electrified Heat Systems. IEEE Transactions on Power Systems, 2022, 37, 3092-3103.	6.5	2
5	Resilience Oriented Planning of Urban Multi-Energy Systems With Generalized Energy Storage Sources. IEEE Transactions on Power Systems, 2022, 37, 2906-2918.	6.5	44
6	Frequency Stability Enhancement of Low-Inertia Large-Scale Power System Based on Grey Wolf Optimization. IEEE Access, 2022, 10, 11657-11668.	4.2	4
7	Exploring the Cellular Base Station Dispatch Potential Towards Power System Frequency Regulation. IEEE Transactions on Power Systems, 2022, 37, 820-823.	6.5	12
8	Backcasting Technical and Policy Targets for Constructing Low-Carbon Power Systems. IEEE Transactions on Power Systems, 2022, 37, 4896-4911.	6.5	14
9	Enlarging flexibility region of virtual power plant via dynamic line rating. IET Renewable Power Generation, 2022, 16, 751-760.	3.1	3
10	Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration. Renewable and Sustainable Energy Reviews, 2022, 160, 112203.	16.4	21
11	Bidding behaviors of GENCOs under bounded rationality with renewable energy. Energy, 2022, 250, 123793.	8.8	12
12	Analytical Adequacy Evaluation for Power Consumers With UPS in Distribution Networks. IEEE Transactions on Smart Grid, 2022, 13, 4424-4435.	9.0	6
13	A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading. Nature Energy, 2022, 7, 495-502.	39.5	39
14	Editorial Special Section on COVID-19 Impact on Electrical Grid Operation: Analysis and Mitigation. IEEE Open Access Journal of Power and Energy, 2022, 9, 183-184.	3.4	0
15	Cost increase in the electricity supply to achieve carbon neutrality in China. Nature Communications, 2022, 13, .	12.8	111
16	Unsupervised Congestion Status Identification Using LMP Data. IEEE Transactions on Smart Grid, 2021, 12, 726-736.	9.0	12
17	Steady-state security region of energy hub: Modeling, calculation, and applications. International Journal of Electrical Power and Energy Systems, 2021, 125, 106551.	5.5	20
18	Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands. Applied Energy, 2021, 282, 116064.	10.1	13

#	Article	IF	Citations
19	Bounding Regression Errors in Data-Driven Power Grid Steady-State Models. IEEE Transactions on Power Systems, 2021, 36, 1023-1033.	6.5	21
20	Sparse Oblique Decision Tree for Power System Security Rules Extraction and Embedding. IEEE Transactions on Power Systems, 2021, 36, 1605-1615.	6.5	24
21	Non-Iterative Multi-Area Coordinated Dispatch via Condensed System Representation. IEEE Transactions on Power Systems, 2021, 36, 1594-1604.	6.5	16
22	Transmission Planning With Battery-Based Energy Storage Transportation For Power Systems With High Penetration of Renewable Energy. IEEE Transactions on Power Systems, 2021, 36, 4928-4940.	6.5	66
23	Deep Inverse Reinforcement Learning for Objective Function Identification in Bidding Models. IEEE Transactions on Power Systems, 2021, 36, 5684-5696.	6.5	18
24	Forecast Aggregated Supply Curves in Power Markets Based On LSTM Model. IEEE Transactions on Power Systems, 2021, 36, 5767-5779.	6.5	14
25	Preliminary analysis of longâ€ŧerm storage requirement in enabling high renewable energy penetration: A case of East Asia. IET Renewable Power Generation, 2021, 15, 1255-1269.	3.1	12
26	Smart grid encounters edge computing: opportunities and applications. Advances in Applied Energy, 2021, 1, 100006.	13.2	68
27	<scp>Quantum</scp> internet for resilient electric grids. International Transactions on Electrical Energy Systems, 2021, 31, e12911.	1.9	11
28	Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. Nature Sustainability, 2021, 4, 739-747.	23.7	84
29	Enhancing the power grid flexibility with battery energy storage transportation and transmission switching. Applied Energy, 2021, 290, 116692.	10.1	28
30	Robust Transmission Expansion Planning Based on Adaptive Uncertainty Set Optimization Under High-Penetration Wind Power Generation. IEEE Transactions on Power Systems, 2021, 36, 2798-2814.	6.5	27
31	Aggregating Distributed Energy Storage: Cloud-Based Flexibility Services From China. IEEE Power and Energy Magazine, 2021, 19, 63-73.	1.6	15
32	A Confidence-Aware Machine Learning Framework for Dynamic Security Assessment. IEEE Transactions on Power Systems, 2021, 36, 3907-3920.	6.5	22
33	Evaluating the Dispatchable Capacity of Base Station Backup Batteries in Distribution Networks. IEEE Transactions on Smart Grid, 2021, 12, 3966-3979.	9.0	40
34	Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method. IEEE Transactions on Power Systems, 2021, 36, 3948-3959.	6.5	43
35	Searching for Critical Power System Cascading Failures With Graph Convolutional Network. IEEE Transactions on Control of Network Systems, 2021, 8, 1304-1313.	3.7	20
36	Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling. Joule, 2021, 5, 2715-2741.	24.0	112

#	Article	IF	Citations
37	Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting. IEEE Transactions on Power Systems, 2020, 35, 188-201.	6.5	144
38	Efficiency Loss for Variable Renewable Energy Incurred by Competition in Electricity Markets. IEEE Transactions on Sustainable Energy, 2020, 11, 1951-1964.	8.8	19
39	Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. IEEE Transactions on Smart Grid, 2020, 11, 1307-1318.	9.0	192
40	Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach. IEEE Transactions on Power Systems, 2020, 35, 731-741.	6.5	111
41	A Block-of-Use Electricity Retail Pricing Approach Based on the Customer Load Profile. IEEE Transactions on Smart Grid, 2020, 11, 1500-1509.	9.0	11
42	On An Equivalent Representation of the Dynamics in District Heating Networks for Combined Electricity-Heat Operation. IEEE Transactions on Power Systems, 2020, 35, 560-570.	6.5	95
43	Incorporating Massive Scenarios in Transmission Expansion Planning With High Renewable Energy Penetration. IEEE Transactions on Power Systems, 2020, 35, 1061-1074.	6.5	58
44	Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model. Applied Energy, 2020, 258, 114029.	10.1	31
45	A Cost-Sharing Approach for Decentralized Electricity–Heat Operation With Renewables. IEEE Transactions on Sustainable Energy, 2020, 11, 1838-1847.	8.8	16
46	Constraining the oligopoly manipulation in electricity market: A vertical integration perspective. Energy, 2020, 194, 116877.	8.8	10
47	Modeling Strategic Behaviors of Renewable Energy With Joint Consideration on Energy and Tradable Green Certificate Markets. IEEE Transactions on Power Systems, 2020, 35, 1898-1910.	6.5	64
48	A Data-Driven Pattern Extraction Method for Analyzing Bidding Behaviors in Power Markets. IEEE Transactions on Smart Grid, 2020, 11, 3509-3521.	9.0	19
49	Incentive Mechanism for Clearing Energy and Reserve Markets in Multi-Area Power Systems. IEEE Transactions on Sustainable Energy, 2020, 11, 2470-2482.	8.8	64
50	Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning. Electric Power Systems Research, 2020, 179, 106082.	3.6	17
51	A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise. IEEE Transactions on Smart Grid, 2020, 11, 2576-2587.	9.0	33
52	Transmission Expansion Planning Test System for AC/DC Hybrid Grid With High Variable Renewable Energy Penetration. IEEE Transactions on Power Systems, 2020, 35, 2597-2608.	6.5	80
53	A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the US Electricity Sector. Joule, 2020, 4, 2322-2337.	24.0	121
54	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420

#	Article	IF	CITATIONS
55	Exploring the trade-offs between electric heating policy and carbon mitigation in China. Nature Communications, 2020, 11, 6054.	12.8	198
56	Building Digital Battery System via Energy Digitization for Sustainable 5G Power Feeding. IEEE Wireless Communications, 2020, 27, 148-154.	9.0	12
57	Modeling frequency response dynamics in power system scheduling. Electric Power Systems Research, 2020, 189, 106549.	3.6	21
58	Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage. Applied Energy, 2020, 278, 115601.	10.1	17
59	Planning district multiple energy systems considering year-round operation. Energy, 2020, 213, 118829.	8.8	8
60	Expansion Planning Model Coordinated with both Stationary and Transportable Storage Systems for Transmission Networks with High RES Penetration. , 2020, , .		2
61	Estimating the Robust P-Q Capability of a Technical Virtual Power Plant Under Uncertainties. IEEE Transactions on Power Systems, 2020, 35, 4285-4296.	6.5	56
62	Multienergy Networks Analytics: Standardized Modeling, Optimization, and Low Carbon Analysis. Proceedings of the IEEE, 2020, 108, 1411-1436.	21.3	68
63	Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets. Applied Energy, 2020, 271, 115159.	10.1	37
64	Integrating Heterogeneous Demand Response into N-1 Security Assessment by Multi-Parametric Programming. , 2020, , .		4
65	Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation. Energy, 2020, 198, 117204.	8.8	10
66	Smart Meter Data Analytics. , 2020, , .		16
67	Matrix modeling of energy hub with variable energy efficiencies. International Journal of Electrical Power and Energy Systems, 2020, 119, 105876.	5.5	45
68	Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid. Applied Energy, 2020, 264, 114636.	10.1	34
69	Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 2020, 261, 114390.	10.1	61
70	Fast Power System Cascading Failure Path Searching With High Wind Power Penetration. IEEE Transactions on Sustainable Energy, 2020, 11, 2274-2283.	8.8	22
71	A Unit Commitment Algorithm With Relaxation-Based Neighborhood Search and Improved Relaxation Inducement. IEEE Transactions on Power Systems, 2020, 35, 3800-3809.	6. 5	11
72	Probabilistic Residential Load Forecasting. , 2020, , 247-269.		1

#	Article	lF	CITATIONS
73	Residential Load Data Generation. , 2020, , 99-135.		1
74	Power market reform in China: Motivations, progress, and recommendations. Energy Policy, 2020, 145, 111717.	8.8	73
75	Modeling Frequency Dynamics in Unit Commitment With a High Share of Renewable Energy. IEEE Transactions on Power Systems, 2020, 35, 4383-4395.	6.5	125
76	Coding for Household Energy Behavior. , 2020, , 205-223.		0
77	Electricity Theft Detection. , 2020, , 79-98.		1
78	Socio-demographic Information Identification. , 2020, , 187-204.		0
79	Prospects of Future Research Issues. , 2020, , 287-293.		0
80	Overview of Smart Meter Data Analytics. , 2020, , 1-35.		2
81	Smart Meter Data Compression. , 2020, , 59-78.		0
82	Personalized Retail Price Design. , 2020, , 163-186.		0
83	Electricity Consumer Behavior Model. , 2020, , 37-57.		1
84	Aggregated Load Forecasting with Sub-profiles. , 2020, , 271-285.		0
85	Partial Usage Pattern Extraction. , 2020, , 137-162.		0
86	Reliability Value of Distributed Solar+Storage Systems Amidst Rare Weather Events. IEEE Transactions on Smart Grid, 2019, 10, 4476-4486.	9.0	47
87	Modeling the Operation Mechanism of Combined P2G and Gas-Fired Plant With CO ₂ Recycling. IEEE Transactions on Smart Grid, 2019, 10, 1111-1121.	9.0	98
88	Robust Two-Stage Regional-District Scheduling of Multi-carrier Energy Systems With a Large Penetration of Wind Power. IEEE Transactions on Sustainable Energy, 2019, 10, 1227-1239.	8.8	133
89	Operation of a High Renewable Penetrated Power System With CSP Plants: A Look-Ahead Stochastic Unit Commitment Model. IEEE Transactions on Power Systems, 2019, 34, 140-151.	6.5	106
90	Combining Probabilistic Load Forecasts. IEEE Transactions on Smart Grid, 2019, 10, 3664-3674.	9.0	139

#	Article	IF	Citations
91	Feature selection for probabilistic load forecasting via sparse penalized quantile regression. Journal of Modern Power Systems and Clean Energy, 2019, 7, 1200-1209.	5.4	15
92	From demand response to integrated demand response: review and prospect of research and application. Protection and Control of Modern Power Systems, 2019, 4, .	7.5	176
93	GAN-based Model for Residential Load Generation Considering Typical Consumption Patterns. , 2019, , .		26
94	Adjustable and distributionally robust chance-constrained economic dispatch considering wind power uncertainty. Journal of Modern Power Systems and Clean Energy, 2019, 7, 658-664.	5.4	15
95	Electricity wholesale market equilibrium analysis integrating individual risk-averse features of generation companies. Applied Energy, 2019, 252, 113443.	10.1	22
96	Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design. Applied Energy, 2019, 252, 113471.	10.1	120
97	Incentive mechanism for sharing distributed energy resources. Journal of Modern Power Systems and Clean Energy, 2019, 7, 837-850.	5.4	55
98	Enforcing Intra-Regional Constraints in Tie-Line Scheduling: A Projection-Based Framework. IEEE Transactions on Power Systems, 2019, 34, 4751-4761.	6.5	46
99	Market Power Mitigation Clearing Mechanism Based on Constrained Bidding Capacities. IEEE Transactions on Power Systems, 2019, 34, 4817-4827.	6.5	30
100	Estimating the Wind Power Integration Threshold Considering Electro-Thermal Coupling of Overhead Transmission Lines. IEEE Transactions on Power Systems, 2019, 34, 3349-3358.	6.5	28
101	Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 2019, 242, 205-215.	10.1	139
102	Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective. IEEE Transactions on Smart Grid, 2019, 10, 6014-6028.	9.0	62
103	Compositional Power Flow for Networked Microgrids. IEEE Power and Energy Technology Systems Journal, 2019, 6, 81-84.	2.8	2
104	Optimal Capacity Pricing and Sizing Approach of Cloud Energy Storage: A Bi-level Model., 2019,,.		2
105	Data-Driven Load Data Cleaning and Its Impacts on Forecasting Performance. , 2019, , .		2
106	Fast Multi-Energy Systems Reliability Evaluation Using Multi-Parametric Linear Programming. , $2019,$, .		3
107	Planning Multiple Energy Systems Toward Low-Carbon Society: A Decentralized Approach. IEEE Transactions on Smart Grid, 2019, 10, 4859-4869.	9.0	101
108	Probabilistic individual load forecasting using pinball loss guided LSTM. Applied Energy, 2019, 235, 10-20.	10.1	265

#	Article	lF	Citations
109	Planning Low-Carbon Campus Energy Hubs. IEEE Transactions on Power Systems, 2019, 34, 1895-1907.	6.5	54
110	A High-Efficiency Network-Constrained Clustered Unit Commitment Model for Power System Planning Studies. IEEE Transactions on Power Systems, 2019, 34, 2498-2508.	6.5	63
111	Introducing Uncertainty Components in Locational Marginal Prices for Pricing Wind Power and Load Uncertainties. IEEE Transactions on Power Systems, 2019, 34, 2013-2024.	6.5	70
112	Operation Strategy of Smart Thermostats That Self-Learn User Preferences. IEEE Transactions on Smart Grid, 2019, 10, 5770-5780.	9.0	11
113	A Novel Combined Data-Driven Approach for Electricity Theft Detection. IEEE Transactions on Industrial Informatics, 2019, 15, 1809-1819.	11.3	175
114	MPLP-Based Fast Power System Reliability Evaluation Using Transmission Line Status Dictionary. IEEE Transactions on Power Systems, 2019, 34, 1630-1640.	6.5	27
115	Standardized Matrix Modeling of Multiple Energy Systems. IEEE Transactions on Smart Grid, 2019, 10, 257-270.	9.0	164
116	Exploring Key Weather Factors From Analytical Modeling Toward Improved Solar Power Forecasting. IEEE Transactions on Smart Grid, 2019, 10, 1417-1427.	9.0	122
117	Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. IEEE Transactions on Smart Grid, 2019, 10, 1452-1464.	9.0	246
118	Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Transactions on Smart Grid, 2019, 10, 3125-3148.	9.0	746
119	Data-Driven Power Flow Linearization: A Regression Approach. IEEE Transactions on Smart Grid, 2019, 10, 2569-2580.	9.0	127
120	Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data. IEEE Transactions on Smart Grid, 2019, 10, 2593-2602.	9.0	138
121	Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data. IEEE Transactions on Industrial Electronics, 2019, 66, 1608-1618.	7.9	43
122	Modeling Carbon Emission Flow in Multiple Energy Systems. IEEE Transactions on Smart Grid, 2019, 10, 3562-3574.	9.0	130
123	Copula Theory and Dependent Probabilistic Sequence Operation. , 2019, , 11-30.		0
124	An Ensemble Forecasting Method for the Aggregated Load With Subprofiles. IEEE Transactions on Smart Grid, 2018, 9, 3906-3908.	9.0	160
125	Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: an ERCOT case study. Journal of Modern Power Systems and Clean Energy, 2018, 6, 281-291.	5.4	28
126	Economic Benefits of Integrating Solar-Powered Heat Pumps Into a CHP System. IEEE Transactions on Sustainable Energy, 2018, 9, 1702-1712.	8.8	37

#	Article	IF	CITATIONS
127	Tri-Level Expansion Planning for Transmission Networks and Distributed Energy Resources Considering Transmission Cost Allocation. IEEE Transactions on Sustainable Energy, 2018, 9, 1844-1856.	8.8	45
128	Scenario Map Based Stochastic Unit Commitment. IEEE Transactions on Power Systems, 2018, 33, 4694-4705.	6.5	34
129	Optimal operation strategy for distributed battery aggregator providing energy and ancillary services. Journal of Modern Power Systems and Clean Energy, 2018, 6, 722-732.	5.4	30
130	Economic justification of concentrating solar power in high renewable energy penetrated power systems. Applied Energy, 2018, 222, 649-661.	10.1	76
131	Guest Editorial for the Special Section on Enabling Very High Penetration Renewable Energy Integration Into Future Power Systems. IEEE Transactions on Power Systems, 2018, 33, 3223-3226.	6.5	11
132	An Efficient Approach to Power System Uncertainty Analysis With High-Dimensional Dependencies. IEEE Transactions on Power Systems, 2018, 33, 2984-2994.	6.5	119
133	Embedding based quantile regression neural network for probabilistic load forecasting. Journal of Modern Power Systems and Clean Energy, 2018, 6, 244-254.	5.4	46
134	An algorithm for practical power curve estimation of wind turbines. CSEE Journal of Power and Energy Systems, 2018, 4, 93-102.	1.1	18
135	Steady-State Power Flow Model of Energy Router Embedded AC Network and Its Application in Optimizing Power System Operation. IEEE Transactions on Smart Grid, 2018, 9, 4828-4837.	9.0	72
136	Optimal Planning Strategy for Distributed Energy Resources Considering Structural Transmission Cost Allocation. IEEE Transactions on Smart Grid, 2018, 9, 5236-5248.	9.0	30
137	Decision-Making Models for the Participants in Cloud Energy Storage. IEEE Transactions on Smart Grid, 2018, 9, 5512-5521.	9.0	116
138	Optimal Power Flow in AC–DC Grids With Discrete Control Devices. IEEE Transactions on Power Systems, 2018, 33, 1461-1472.	6.5	68
139	A Linearized OPF Model With Reactive Power and Voltage Magnitude: A Pathway to Improve the MW-Only DC OPF. IEEE Transactions on Power Systems, 2018, 33, 1734-1745.	6.5	211
140	Effect of Natural Gas Flow Dynamics in Robust Generation Scheduling Under Wind Uncertainty. IEEE Transactions on Power Systems, 2018, 33, 2087-2097.	6.5	119
141	Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied Energy, 2018, 210, 1141-1150.	10.1	196
142	Power generation scheduling considering stochastic emission limits. International Journal of Electrical Power and Energy Systems, 2018, 95, 374-383.	5.5	16
143	A monthly electricity consumption forecasting method based on vector error correction model and self-adaptive screening method. International Journal of Electrical Power and Energy Systems, 2018, 95, 427-439.	5.5	44
144	Automatic and linearized modeling of energy hub and its flexibility analysis. Applied Energy, 2018, 211, 705-714.	10.1	91

#	Article	IF	Citations
145	Fundamental Review of the OPF Problem: Challenges, Solutions, and State-of-the-Art Algorithms. Journal of Energy Engineering - ASCE, 2018, 144, .	1.9	22
146	Market equilibrium analysis with high penetration of renewables and gas-fired generation: An empirical case of the Beijing-Tianjin-Tangshan power system. Applied Energy, 2018, 227, 384-392.	10.1	19
147	Optimal Operation of Hybrid AC/DC Distribution Network with High Penetrated Renewable Energy. , 2018, , .		6
148	Linearized Model for Active and Reactive LMP Considering Bus Voltage Constraints. , 2018, , .		5
149	Constructing Probabilistic Load Forecast From Multiple Point Forecasts: A Bootstrap Based Approach. , 2018, , .		4
150	Big Data Analytics in China's Electric Power Industry: Modern Information, Communication Technologies, and Millions of Smart Meters. IEEE Power and Energy Magazine, 2018, 16, 54-65.	1.6	38
151	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Transactions on Power Systems, 2018, 33, 6630-6641.	6.5	183
152	On Normality Assumption in Residual Simulation for Probabilistic Load Forecasting. IEEE Transactions on Smart Grid, 2017, 8, 1046-1053.	9.0	70
153	Decentralized Intraday Generation Scheduling for Multiarea Power Systems via Dynamic Multiplier-Based Lagrangian Relaxation. IEEE Transactions on Power Systems, 2017, 32, 454-463.	6.5	35
154	LMP Revisited: A Linear Model for the Loss-Embedded LMP. IEEE Transactions on Power Systems, 2017, 32, 4080-4090.	6.5	50
155	Distributed real-time demand response based on Lagrangian multiplier optimal selection approach. Applied Energy, 2017, 190, 949-959.	10.1	42
156	Optimal jointâ€dispatch of energy and reserve for CCHPâ€based microgrids. IET Generation, Transmission and Distribution, 2017, 11, 785-794.	2.5	86
157	Harnessing Flexibility from Hot and Cold: Heat Storage and Hybrid Systems Can Play a Major Role. IEEE Power and Energy Magazine, 2017, 15, 25-33.	1.6	35
158	Analysis of transmission expansion planning considering consumption-based carbon emission accounting. Applied Energy, 2017, 193, 232-242.	10.1	41
159	Long-term coordination of transmission and storage to integrate wind power. CSEE Journal of Power and Energy Systems, 2017, 3, 36-43.	1.1	50
160	Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production. Applied Energy, 2017, 193, 540-549.	10.1	24
161	Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. IEEE Transactions on Power Systems, 2017, 32, 3559-3568.	6.5	179
162	Cloud energy storage for residential and small commercial consumers: A business case study. Applied Energy, 2017, 188, 226-236.	10.1	169

#	Article	IF	Citations
163	A State-Independent Linear Power Flow Model With Accurate Estimation of Voltage Magnitude. IEEE Transactions on Power Systems, 2017, 32, 3607-3617.	6.5	221
164	Dependent Discrete Convolution Based Probabilistic Load Flow for the Active Distribution System. IEEE Transactions on Sustainable Energy, 2017, 8, 1000-1009.	8.8	75
165	Linear three-phase power flow for unbalanced active distribution networks with PV nodes. CSEE Journal of Power and Energy Systems, 2017, 3, 321-324.	1.1	87
166	A Nash-Cournot approach to assessing flexible ramping products. Applied Energy, 2017, 206, 42-50.	10.1	20
167	Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products. Applied Energy, 2017, 205, 294-303.	10.1	134
168	Integrated Energy Systems for Higher Wind Penetration in China: Formulation, Implementation and Impacts. IEEE Transactions on Power Systems, 2017, , 1-1.	6.5	38
169	Corrective receding horizon scheduling of flexible distributed multi-energy microgrids. Applied Energy, 2017, 207, 176-194.	10.1	70
170	Review and prospect of integrated demand response in the multi-energy system. Applied Energy, 2017, 202, 772-782.	10.1	385
171	Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap. Applied Energy, 2017, 185, 56-67.	10.1	88
172	Transmission capacity margin in market clearing. Electric Power Systems Research, 2017, 143, 682-691.	3.6	2
173	Managing Wind Power Uncertainty Through Strategic Reserve Purchasing. IEEE Transactions on Power Systems, 2017, 32, 2547-2559.	6.5	45
174	Optimal transmission conversion from alternating current to high voltage direct current transmission systems for limiting short circuit currents. Energy, 2017, 118, 545-555.	8.8	2
175	A novel network model for optimal power flow with reactive power and network losses. Electric Power Systems Research, 2017, 144, 63-71.	3.6	44
176	Optimal Reactive Power Dispatch With Accurately Modeled Discrete Control Devices: A Successive Linear Approximation Approach. IEEE Transactions on Power Systems, 2017, 32, 2435-2444.	6.5	67
177	Sparse and Redundant Representation-Based Smart Meter Data Compression and Pattern Extraction. IEEE Transactions on Power Systems, 2017, 32, 2142-2151.	6.5	103
178	Lowâ€carbon economic dispatch for integrated heat and power systems considering network constraints. Journal of Engineering, 2017, 2017, 2628-2633.	1.1	5
179	Modeling the transient security constraints of natural gas network in day-ahead power system scheduling., 2017,,.		2
180	Average electrical distance-based bus clustering method for network equivalence., 2017,,.		1

#	Article	IF	Citations
181	Solving OPF using linear approximations: fundamental analysis and numerical demonstration. IET Generation, Transmission and Distribution, 2017, 11, 4115-4125.	2.5	48
182	Stochastic scheduling ensuring air quality through wind power and storage coordination. IET Generation, Transmission and Distribution, 2017, 11, 2031-2040.	2.5	5
183	Techno-economic analysis of contingency reserve allocation scheme for combined UHV DC and AC receiving-end power system. CSEE Journal of Power and Energy Systems, 2016, 2, 62-70.	1.1	13
184	A Two-Level Approach to AC Optimal Transmission Switching with an Accelerating Technique. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	16
185	Residential smart meter data compression and pattern extraction via non-negative K-SVD., 2016,,.		4
186	Evaluating the spatial correlations of multi-area load forecasting errors. , 2016, , .		3
187	From high-resolution data to high-resolution probabilistic load forecasts. , 2016, , .		3
188	A comparative view of risk management in financial sector and in next generation power grid operation. , 2016, , .		0
189	Smart Metering Load Data Compression Based on Load Feature Identification. IEEE Transactions on Smart Grid, 2016, 7, 2414-2422.	9.0	55
190	Pool equilibria including strategic storage. Applied Energy, 2016, 177, 260-270.	10.1	39
190 191	Pool equilibria including strategic storage. Applied Energy, 2016, 177, 260-270. Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016,,.	10.1	39
		2.5	
191	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016,,. Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Generation, Transmission and Distribution,		9
191 192	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016, , . Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Generation, Transmission and Distribution, 2016, 10, 1278-1285. Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications. IEEE	2.5	32
191 192 193	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016, , . Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Generation, Transmission and Distribution, 2016, 10, 1278-1285. Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications. IEEE Transactions on Smart Grid, 2016, 7, 2437-2447. A Structural Transmission Cost Allocation Scheme Based on Capacity Usage Identification. IEEE	2.5	9 32 265
191 192 193	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016,,. Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Generation, Transmission and Distribution, 2016, 10, 1278-1285. Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications. IEEE Transactions on Smart Grid, 2016, 7, 2437-2447. A Structural Transmission Cost Allocation Scheme Based on Capacity Usage Identification. IEEE Transactions on Power Systems, 2016, 31, 2876-2884.	2.5 9.0 6.5	9 32 265 24
191 192 193 194	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016, , . Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Generation, Transmission and Distribution, 2016, 10, 1278-1285. Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications. IEEE Transactions on Smart Grid, 2016, 7, 2437-2447. A Structural Transmission Cost Allocation Scheme Based on Capacity Usage Identification. IEEE Transactions on Power Systems, 2016, 31, 2876-2884. Optimal power flow based on successive linear approximation of power flow equations. IET Generation, Transmission and Distribution, 2016, 10, 3654-3662.	2.5 9.0 6.5	9 32 265 24 86

#	Article	IF	CITATIONS
199	Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. Applied Energy, 2016, 184, 987-994.	10.1	186
200	Cross-domain feature selection and coding for household energy behavior. Energy, 2016, 107, 9-16.	8.8	26
201	Optimal Bidding Strategy of Battery Storage in Power Markets Considering Performance-Based Regulation and Battery Cycle Life. IEEE Transactions on Smart Grid, 2016, 7, 2359-2367.	9.0	341
202	Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Transactions on Smart Grid, 2016, 7, 2817-2826.	9.0	419
203	Optimal Offering Strategy for Concentrating Solar Power Plants in Joint Energy, Reserve and Regulation Markets. IEEE Transactions on Sustainable Energy, 2016, 7, 1245-1254.	8.8	126
204	Copula Based Dependent Discrete Convolution for Power System Uncertainty Analysis. IEEE Transactions on Power Systems, 2016, 31, 5204-5205.	6.5	40
205	Coordination of Generation Maintenance Pub _newline? Scheduling in Electricity Markets. IEEE Transactions on Power Systems, 2016, 31, 4565-4574.	6.5	34
206	Coordination of generation maintenance scheduling and longâ€term SCUC with energy constraints and ⟨i⟩N⟨/i⟩ â° 1 contingencies. IET Generation, Transmission and Distribution, 2016, 10, 325-333.	2.5	19
207	Evaluating the Contribution of Energy Storages to Support Large-Scale Renewable Generation in Joint Energy and Ancillary Service Markets. IEEE Transactions on Sustainable Energy, 2016, 7, 808-818.	8.8	129
208	A Probabilistic Method for Determining Grid-Accommodable Wind Power Capacity Based on Multiscenario System Operation Simulation. IEEE Transactions on Smart Grid, 2016, 7, 400-409.	9.0	28
209	Optimal Transmission Switching With Short-Circuit Current Limitation Constraints. IEEE Transactions on Power Systems, 2016, 31, 1278-1288.	6.5	51
210	A Game Theoretical Pricing Mechanism for Multi-Area Spinning Reserve Trading Considering Wind Power Uncertainty. IEEE Transactions on Power Systems, 2016, 31, 1084-1095.	6.5	29
211	Load profiling and its application to demand response: A review. Tsinghua Science and Technology, 2015, 20, 117-129.	6.1	212
212	A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Transactions on Sustainable Energy, 2015, 6, 1283-1291.	8.8	152
213	Geographical impacts of natural disaster on power system reliability. , 2015, , .		1
214	Modeling and algorithm to find the economic equilibrium for pool-based electricity market with the changing generation mix. , 2015 , , .		2
215	Reformulation for Nash-Cournot equilibrium in pool-based electricity market supported by introducing the potential function. , 2015, , .		0
216	Equivalent ramp rate function for thermal power systems. , 2015, , .		1

#	Article	IF	CITATIONS
217	An Efficient Decomposition Method for the Integrated Dispatch of Generation and Load. IEEE Transactions on Power Systems, 2015, 30, 2923-2933.	6.5	28
218	Estimating life-cycle energy payback ratio of overhead transmission line toward low carbon development. Journal of Modern Power Systems and Clean Energy, 2015, 3, 123-130.	5 . 4	5
219	Multi-stage coupon incentive-based demand response in two-settlement electricity markets. , 2015, , .		13
220	A decomposition method for network-constrained unit commitment with AC power flow constraints. Energy, 2015, 88, 595-603.	8.8	42
221	Distribution Pricing: Are We Ready for the Smart Grid?. IEEE Power and Energy Magazine, 2015, 13, 76-86.	1.6	20
222	Foreword for the Special Section on Power System Planning and Operation Towards a Low-Carbon Economy. IEEE Transactions on Power Systems, 2015, 30, 1015-1016.	6.5	4
223	Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy, 2015, 83, 14-25.	8.8	50
224	Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Transactions on Smart Grid, 2015, 6, 2386-2394.	9.0	173
225	Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach. Applied Energy, 2015, 158, 508-518.	10.1	27
226	<i>N</i> â° 1Âsecurity assessment approach based on the steadyâ€state security distance. IET Generation, Transmission and Distribution, 2015, 9, 2419-2426.	2. 5	26
227	Transmission network expansion planning with embedded constraints of short circuit currents and N-1 security. Journal of Modern Power Systems and Clean Energy, 2015, 3, 312-320.	5 . 4	24
228	Decentralized Multi-Area Economic Dispatch via Dynamic Multiplier-Based Lagrangian Relaxation. IEEE Transactions on Power Systems, 2015, 30, 3225-3233.	6.5	96
229	Analysis of power transfer limit considering thermal balance of overhead conductor. IET Generation, Transmission and Distribution, 2015, 9, 2007-2013.	2.5	16
230	A Convex Model of Risk-Based Unit Commitment for Day-Ahead Market Clearing Considering Wind Power Uncertainty. IEEE Transactions on Power Systems, 2015, 30, 1582-1592.	6.5	121
231	Increasing the Flexibility of Combined Heat and Power for Wind Power Integration in China: Modeling and Implications. IEEE Transactions on Power Systems, 2015, 30, 1848-1857.	6.5	459
232	Integrated dispatch of generation and load: A pathway towards smart grids. Electric Power Systems Research, 2015, 120, 206-213.	3.6	33
233	Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit. Journal of Electrical Engineering and Technology, 2015, 10, 1930-1939.	2.0	1
234	Anti-disaster transmission expansion planning considering wind power integration using ordinal optimization. , 2014, , .		1

#	Article	IF	Citations
235	Adaptability verification and application of the t-distribution in short-term load forecasting error analysis. , $2014, $, .		2
236	Life cycle assessment of energy consumption and CO <inf>2</inf> emission for transmission system. , 2014, , .		1
237	Opportunity for Offshore Wind to Reduce Future Demand for Coal-Fired Power Plants in China with Consequent Savings in Emissions of CO ₂ . Environmental Science & Env	10.0	16
238	Day-ahead battery scheduling in microgrid considering wind power uncertainty using ordinal optimization. , $2014, , .$		6
239	Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Applied Energy, 2014, 117, 149-156.	10.1	108
240	Modeling Conditional Forecast Error for Wind Power in Generation Scheduling. IEEE Transactions on Power Systems, 2014, 29, 1316-1324.	6.5	208
241	Improving the Accuracy of Bus Load Forecasting by a Two-Stage Bad Data Identification Method. IEEE Transactions on Power Systems, 2014, 29, 1634-1641.	6.5	42
242	Inducing-objective-function-based method for long-term SCUC with energy constraints. International Journal of Electrical Power and Energy Systems, 2014, 63, 971-978.	5 . 5	13
243	Synergies of Wind Power and Electrified Space Heating: Case Study for Beijing. Environmental Science & Eamp; Technology, 2014, 48, 2016-2024.	10.0	27
244	Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector. Renewable and Sustainable Energy Reviews, 2014, 32, 671-683.	16.4	52
245	Zonal marginal pricing approach based on sequential network partition and congestion contribution identification. International Journal of Electrical Power and Energy Systems, 2013, 51, 321-328.	5.5	33
246	Dynamic Economic Dispatch Considering Transmission Losses Using Quadratically Constrained Quadratic Program Method. IEEE Transactions on Power Systems, 2013, 28, 2232-2241.	6.5	60
247	Active boundary identifying technique for steady-state security distance assessment., 2013,,.		1
248	Mid-short-term risk assessment of power systems considering impact of external environment. Journal of Modern Power Systems and Clean Energy, 2013, 1, 118-126.	5.4	13
249	Balance of Power: Toward a More Environmentally Friendly, Efficient, and Effective Integration of Energy Systems in China. IEEE Power and Energy Magazine, 2013, 11, 56-64.	1.6	61
250	Multi-period coordinated active-reactive scheduling of active distribution system., 2013,,.		5
251	Low-Carbon Power System Dispatch Incorporating Carbon Capture Power Plants. IEEE Transactions on Power Systems, 2013, 28, 4615-4623.	6.5	122
252	Planning Pumped Storage Capacity for Wind Power Integration. IEEE Transactions on Sustainable Energy, 2013, 4, 393-401.	8.8	113

#	Article	IF	CITATIONS
253	Rigorous model for evaluating wind power capacity credit. IET Renewable Power Generation, 2013, 7, 504-513.	3.1	25
254	Steadyâ€state security assessment method based on distance to security region boundaries. IET Generation, Transmission and Distribution, 2013, 7, 288-297.	2.5	53
255	Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula. Journal of Electrical Engineering and Technology, 2013, 8, 1615-1625.	2.0	29
256	A rural heat load direct control model for wind power integration in China. , 2012, , .		4
257	Carbon Emission Flow in Networks. Scientific Reports, 2012, 2, 479.	3.3	91
258	Optimal Flexible Operation of a CO\$_{2}\$ Capture Power Plant in a Combined Energy and Carbon Emission Market. IEEE Transactions on Power Systems, 2012, 27, 1602-1609.	6.5	73
259	A comprehensive low-carbon benefits assessment model for power systems. , 2012, , .		6
260	Evaluating low-carbon effects of demand response from smart distribution grid., 2012,,.		12
261	Analysis on demand-side interactive response capability for power system dispatch in a smart grid framework. Electric Power Systems Research, 2012, 90, 11-17.	3.6	22
262	Transient-constrained dynamic economic scheduling using trajectory sensitivity., 2011,,.		1
263	Unit Commitment With Volatile Node Injections by Using Interval Optimization. IEEE Transactions on Power Systems, 2011, 26, 1705-1713.	6.5	185
264	A novel security stochastic unit commitment for wind-thermal system operation. , 2011, , .		10
265	Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Transactions on Power Systems, 2011, 26, 500-507.	6.5	81
266	Preliminary exploration on low-carbon technology roadmap of China's power sector. Energy, 2011, 36, 1500-1512.	8.8	87
267	Novel approach of modeling load duration curve for generation expansion planning based on Hill's function. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6, 304-310.	1.4	2
268	Thermal generation operating cost variations with wind power integration. , 2011, , .		5
269	Estimating of sulfur hexafluoride gas emission from electric equipments. , 2011, , .		1
270	Transition of tariff structure and distribution pricing in China. , 2011, , .		13

#	Article	IF	Citations
271	Novel transmission pricing scheme based on point-to-point tariff and transaction pair matching for pool market. Electric Power Systems Research, 2010, 80, 481-488.	3.6	8
272	Input-output table of electricity demand and its application. Energy, 2010, 35, 326-331.	8.8	29
273	Demand side management in China. , 2010, , .		25
274	Real option analysis on carbon capture power plants under flexible operation mechanism., 2010,,.		6
275	Power Generation Expansion Planning Model Towards Low-Carbon Economy and Its Application in China. IEEE Transactions on Power Systems, 2010, 25, 1117-1125.	6.5	183
276	Improved Bisection Searching Technique for voltage collapse analysis in reliability evaluation. , 2010, , .		2
277	Modeling Flexible Operation Mechanism of \$hbox{CO}_{2}\$ Capture Power Plant and Its Effects on Power-System Operation. IEEE Transactions on Energy Conversion, 2010, 25, 853-861.	5.2	75
278	SIMULATION METHODOLOGY OF MULTIPLE WIND FARMS OPERATION CONSIDERING WIND SPEED CORRELATION. International Journal of Power and Energy Systems, 2010, 30, .	0.2	25
279	Novel approach for evaluation of service reliability for electricity customers. Science in China Series D: Earth Sciences, 2009, 52, 2585-2590.	0.9	2
280	Multiple-interval power system dispatch considering probabilistic wind generation. , 2009, , .		1
281	Development of multidimensional sequence operation theory with applications to risk evaluation in power system generation scheduling. Science in China Series D: Earth Sciences, 2008, 51, 724-734.	0.9	8
282	Novel approach to assess local market power considering transmission constraints. International Journal of Electrical Power and Energy Systems, 2008, 30, 39-45.	5.5	9
283	Transition of China Power Industry: Market and Reliability Issues. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	1
284	Incorporating reliability evaluation into the uncertainty analysis of electricity market price. Electric Power Systems Research, 2005, 73, 205-215.	3.6	8
285	Dispatch liquidity theory in a deregulated environment. Tsinghua Science and Technology, 2005, 10, 240-246.	6.1	1
286	Novel approach considering load-relative factors in short-term load forecasting. Electric Power Systems Research, 2004, 70, 99-107.	3.6	18
287	Sequence operation theory and its application in power system reliability evaluation. Reliability Engineering and System Safety, 2002, 78, 101-109.	8.9	19
288	Effective decomposition and co-ordination algorithms for unit commitment and economic dispatch with security constraints. Electric Power Systems Research, 2000, 53, 39-45.	3.6	10

#	ARTICLE	IF	CITATIONS
289	Dynamic queuing approach to power system short term economic and security dispatch. IEEE Transactions on Power Systems, 1998, 13, 280-285.	6.5	19
290	Novel models and algorithms for generating unit location optimization. IEEE Transactions on Power Systems, 1997, 12, 1584-1590.	6.5	6
291	Risk evaluation of electricity price and its sensitivity analysis after deregulation. , 0, , .		3
292	Competitiveness Criterion and Evaluation Approach of AGC Market., 0, , .		2