
Nathalie Verbruggen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8280614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential trace metals in plant responses to heat stress. Journal of Experimental Botany, 2022, 73, 1775-1788.	4.8	6
2	Essential trace metals: micronutrients with large impact. Journal of Experimental Botany, 2022, 73, 1685-1687.	4.8	4
3	Exploiting Genomic Features to Improve the Prediction of Transcription Factor-Binding Sites in Plants. Plant and Cell Physiology, 2022, 63, 1457-1473.	3.1	7
4	Mg deficiency interacts with the circadian clock and phytochromes pathways in Arabidopsis. Annals of Applied Biology, 2021, 178, 387-399.	2.5	5
5	Adaptation of <i>Arabidopsis halleri</i> to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. New Phytologist, 2021, 230, 669-682.	7.3	17
6	Magnesium maintains the length of the circadian period in Arabidopsis. Plant Physiology, 2021, 185, 519-532.	4.8	22
7	Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress. Plant, Cell and Environment, 2020, 43, 760-774.	5.7	6
8	Different strategies of Cd tolerance and accumulation in <i>Arabidopsis halleri</i> and <scp><i>Arabidopsis arenosa</i></scp> . Plant, Cell and Environment, 2020, 43, 3002-3019.	5.7	16
9	Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Frontiers in Plant Science, 2019, 10, 748.	3.6	65
10	Tolerance and accumulation of cobalt in three species of Haumaniastrum and the influence of copper. Environmental and Experimental Botany, 2018, 149, 27-33.	4.2	24
11	Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of <i>Arabidopsis halleri</i> . New Phytologist, 2018, 218, 269-282.	7.3	90
12	Contrasting cadmium resistance strategies in two metallicolous populations of <i>Arabidopsis halleri</i> . New Phytologist, 2018, 218, 283-297.	7.3	88
13	Variation in copper and cobalt tolerance and accumulation among six populations of the facultative metallophyte Anisopappus chinensis (Asteraceae). Environmental and Experimental Botany, 2018, 153, 1-9.	4.2	8
14	Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca ²⁺ dynamics in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3966-3971.	7.1	61
15	CAX1 suppresses Cdâ€induced generation of reactive oxygen species in <i>Arabidopsis halleri</i> . Plant, Cell and Environment, 2018, 41, 2435-2448.	5.7	39
16	Modeling the photoperiodic entrainment of the plant circadian clock. Journal of Theoretical Biology, 2017, 420, 220-231.	1.7	19
17	Impact of postâ€flowering nitrate availability on nitrogen remobilization inÂhydroponically grown durum wheat. Journal of Plant Nutrition and Soil Science, 2017, 180, 273-278.	1.9	5
18	Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation. Plant and Soil, 2017, 413, 261-273.	3.7	10

#	Article	IF	CITATIONS
19	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 2017, 213, 537-551.	7.3	190
20	A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 70.	3.6	9
21	A Compact Model for the Complex Plant Circadian Clock. Frontiers in Plant Science, 2016, 7, 74.	3.6	73
22	Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. Plant Signaling and Behavior, 2016, 11, e1183861.	2.4	18
23	Arabidopsis <i><scp>COPPER MODIFIED RESISTANCE</scp>1/<scp>PATRONUS</scp>1</i> is essential for growth adaptation to stress and required for mitotic onset control. New Phytologist, 2016, 209, 177-191.	7.3	19
24	Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of <i>Arabidopsis halleri</i> . New Phytologist, 2016, 212, 934-943.	7.3	60
25	Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply. Crop and Pasture Science, 2015, 66, 1249.	1.5	12
26	Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. Journal of Experimental Botany, 2015, 66, 3201-3214.	4.8	86
27	Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany, 2015, 66, 3215-3227.	4.8	120
28	<i>CATION EXCHANGER1</i> Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator <i>Arabidopsis halleri</i> and Plays a Role in Limiting Oxidative Stress in <i>Arabidopsis</i> Spp Plant Physiology, 2015, 169, 549-559.	4.8	109
29	Towards the discovery of novel genetic component involved in stress resistance in A rabidopsis thaliana. New Phytologist, 2014, 201, 810-824.	7.3	12
30	Tolerance to cadmium in plants: the special case of hyperaccumulators. BioMetals, 2013, 26, 633-638.	4.1	75
31	Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil, 2013, 368, 87-99.	3.7	207
32	An update on magnesium homeostasis mechanisms in plants. Metallomics, 2013, 5, 1170.	2.4	133
33	Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013, 18, 92-99.	8.8	844
34	A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Frontiers in Plant Science, 2013, 4, 388.	3.6	29
35	Magnesium in Plants. , 2013, , 1269-1276.		1
36	Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1016-1023.	2.3	17

NATHALIE VERBRUGGEN

#	Article	IF	CITATIONS
37	Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botany, 2012, 84, 11-16.	4.2	34
38	Biodiversity of Mineral Nutrient and Trace Element Accumulation in Arabidopsis thaliana. PLoS ONE, 2012, 7, e35121.	2.5	82
39	Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of Experimental Botany, 2012, 63, 4179-4189.	4.8	105
40	Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytologist, 2011, 192, 428-436.	7.3	73
41	Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases. Planta, 2011, 234, 83-95.	3.2	36
42	Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates. Mycorrhiza, 2011, 21, 145-154.	2.8	22
43	Dissecting the Role of CHITINASE-LIKE1 in Nitrate-Dependent Changes in Root Architecture Â. Plant Physiology, 2011, 157, 1313-1326.	4.8	28
44	Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant and Soil, 2010, 328, 235-244.	3.7	50
45	Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant and Soil, 2010, 334, 461-474.	3.7	12
46	Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 2010, 48, 673-682.	5.8	321
47	Systems analysis of the responses to longâ€ŧerm magnesium deficiency and restoration in <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 187, 132-144.	7.3	140
48	Early transcriptomic changes induced by magnesium deficiency in <i>Arabidopsis thaliana</i> reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acidâ€responsive genes. New Phytologist, 2010, 187, 119-131.	7.3	133
49	Quantitative trait loci analysis of mineral element concentrations in an <i>Arabidopsis halleri</i> â€f×â€f <i>Arabidopsis lyrata petraea</i> F ₂ progeny grown on cadmiumâ€contaminate soil. New Phytologist, 2010, 187, 368-379.	ed7.3	64
50	Genetic architecture of zinc hyperaccumulation in <i>Arabidopsis halleri</i> : the essential role of QTL × environment interactions. New Phytologist, 2010, 187, 355-367.	7.3	81
51	Chitinase-Like Protein CTL1 Plays a Role in Altering Root System Architecture in Response to Multiple Environmental Conditions Â. Plant Physiology, 2010, 152, 904-917.	4.8	77
52	Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 2009, 12, 364-372.	7.1	678
53	Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil, 2009, 317, 201-212.	3.7	43
54	Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009, 181, 759-776.	7.3	869

#	Article	IF	CITATIONS
55	Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental Pollution, 2009, 157, 1581-1588.	7.5	103
56	Proline accumulation in plants: a review. Amino Acids, 2008, 35, 753-759.	2.7	1,435
57	The Genetic Basis of Zinc Tolerance in the Metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): An Analysis of Quantitative Trait Loci. Genetics, 2007, 176, 659-674.	2.9	160
58	Response to Andrews et al.: correlations and causality. Trends in Plant Science, 2007, 12, 532-533.	8.8	6
59	A Major Quantitative Trait Locus for Cadmium Tolerance in Arabidopsis halleri Colocalizes with HMA4, a Gene Encoding a Heavy Metal ATPase. Plant Physiology, 2007, 144, 1052-1065.	4.8	288
60	Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations. Mycorrhiza, 2007, 17, 571-580.	2.8	26
61	How do plants respond to nutrient shortage by biomass allocation?. Trends in Plant Science, 2006, 11, 610-617.	8.8	957
62	Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. Journal of Experimental Botany, 2006, 57, 2967-2983.	4.8	51
63	Adaptative Evolution of Metallothionein 3 in the Cd/Zn Hyperaccumulator Thlaspi caerulescens. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 224-228.	1.4	6
64	Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 2005, 220, 541-549.	3.2	177
65	Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta, 2005, 222, 716-729.	3.2	89
66	Physiological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 2005, 56, 2153-2161.	4.8	212
67	Characterization and functional investigation of an Arabidopsis cDNA encoding a homologue to the d-PGMase superfamily. Journal of Experimental Botany, 2005, 56, 1129-1142.	4.8	8
68	Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems21 and II. Planta, 2004, 220, 344-355.	3.2	193
69	A novel CPx-ATPase from the cadmium hyperaccumulatorThlaspi caerulescens. FEBS Letters, 2004, 569, 140-148.	2.8	165
70	Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulatorThlaspi caerulescens. FEBS Letters, 2004, 577, 9-16.	2.8	108
71	Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell and Environment, 2003, 26, 1657-1672.	5.7	242
72	Altered Levels of Proline Dehydrogenase Cause Hypersensitivity to Proline and Its Analogs in Arabidopsis. Plant Physiology, 2002, 128, 73-83.	4.8	155

NATHALIE VERBRUGGEN

#	Article	IF	CITATIONS
73	Small heat shock proteins and stress tolerance in plants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 1-9.	2.4	556
74	Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiology, 2002, 128, 73-83.	4.8	38
75	The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant Journal, 2001, 26, 157-169.	5.7	83
76	At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant Journal, 2001, 27, 407-415.	5.7	289
77	Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 2000, 211, 632-640.	3.2	176
78	Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant Journal, 1999, 18, 321-327.	5.7	119
79	A 69 bp fragment in the pyrroline-5-carboxylate reductase promoter ofArabidopsis thalianaactivates minimal CaMV 35S promoter in a tissue-specific manner. FEBS Letters, 1999, 458, 193-196.	2.8	5
80	Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science, 1998, 138, 27-34.	3.6	102
81	Isolation, characterization, and chromosomal location of a gene encoding theî"1-pyrroline-5-carboxylate synthetase inArabidopsis thaliana. FEBS Letters, 1995, 372, 13-19.	2.8	174
82	Synthesis of the proline analogue [2,3-3H]azetidine-2-carboxylic acid Uptake and incorporation inArabidopsis thalianaandEscherichia coli. FEBS Letters, 1992, 308, 261-263.	2.8	10