Zaal G Kokaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8280478/publications.pdf Version: 2024-02-01

		10389	7348
165	24,001	72	152
papers	citations	h-index	g-index
172	172	172	10520
173	173	173	18538
all docs	docs citations	times ranked	citing authors

ZAAL C. KOKALA

#	Article	IF	CITATIONS
1	Hypoxia inducible factorâ€2α importance for migration, proliferation, and selfâ€renewal of trunk neural crest cells. Developmental Dynamics, 2021, 250, 191-236.	1.8	19
2	NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities. Frontiers in Cellular Neuroscience, 2021, 15, 602888.	3.7	9
3	Neuronal Replacement in Stem Cell Therapy for Stroke: Filling the Gap. Frontiers in Cell and Developmental Biology, 2021, 9, 662636.	3.7	14
4	Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nature Communications, 2021, 12, 5501.	12.8	98
5	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
6	Human stem cell-derived GABAergic neurons functionally integrate into human neuronal networks. Scientific Reports, 2021, 11, 22050.	3.3	8
7	SmartFlare TM is a reliable method for assessing mRNA expression in single neural stem cells. World Journal of Stem Cells, 2021, 13, 1918-1927.	2.8	1
8	Poly(ester amide) microspheres are efficient vehicles for long-term intracerebral growth factor delivery and improve functional recovery after stroke. Biomedical Materials (Bristol), 2020, 15, 065020.	3.3	5
9	Blocking Notch-Signaling Increases Neurogenesis in the Striatum after Stroke. Cells, 2020, 9, 1732.	4.1	26
10	Activity in grafted human iPS cell–derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9094-9100.	7.1	59
11	Grafted human pluripotent stem cellâ€derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Translational Medicine, 2020, 9, 1365-1377.	3.3	29
12	Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports, 2020, 15, 256-273.	4.8	49
13	Stem Cells as an Emerging Paradigm in Stroke 4. Stroke, 2019, 50, 3299-3306.	2.0	68
14	In Vitro Functional Characterization of Human Neurons and Astrocytes Using Calcium Imaging and Electrophysiology. Methods in Molecular Biology, 2019, 1919, 73-88.	0.9	11
15	Increased FUS levels in astrocytes leads to astrocyte and microglia activation and neuronal death. Scientific Reports, 2019, 9, 4572.	3.3	34
16	Sensors of Succinate: Neural Stem Cell Grafts Fight Neuroinflammation. Cell Stem Cell, 2018, 22, 283-285.	11.1	7
17	Customized Brain Cells for Stroke Patients Using Pluripotent Stem Cells. Stroke, 2018, 49, 1091-1098.	2.0	29
18	Transcription factor programming of human ES cells generates functional neurons expressing both upper and deep layer cortical markers. PLoS ONE, 2018, 13, e0204688.	2.5	13

#	Article	IF	CITATIONS
19	Human Neural Stem Cells for Ischemic Stroke Treatment. Results and Problems in Cell Differentiation, 2018, 66, 249-263.	0.7	14
20	Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS ONE, 2018, 13, e0192118.	2.5	11
21	Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. ELife, 2018, 7, .	6.0	77
22	Attitudes to Stem Cell Therapy Among Ischemic Stroke Survivors in the Lund Stroke Recovery Study. Stem Cells and Development, 2017, 26, 566-572.	2.1	9
23	Transplantation of reprogrammed neurons for improved recovery after stroke. Progress in Brain Research, 2017, 231, 245-263.	1.4	16
24	Spontaneous Recovery of Upper Extremity Motor Impairment After Ischemic Stroke: Implications for Stem Cell-Based Therapeutic Approaches. Translational Stroke Research, 2017, 8, 351-361.	4.2	14
25	Stroke alters behavior of human skin-derived neural progenitors after transplantation adjacent to neurogenic area in rat brain. Stem Cell Research and Therapy, 2017, 8, 59.	5.5	9
26	Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 2017, 140, aww347.	7.6	104
27	Monocyte depletion early after stroke promotes neurogenesis from endogenous neural stem cells in adult brain. Experimental Neurology, 2017, 297, 129-137.	4.1	19
28	Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. Journal of Neuroinflammation, 2017, 14, 153.	7.2	62
29	Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Research and Therapy, 2017, 8, 207.	5.5	45
30	Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomedical Materials (Bristol), 2016, 11, 025011.	3.3	11
31	Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. Journal of Neuroscience, 2016, 36, 4182-4195.	3.6	277
32	Neurogenesis following Stroke Affecting the Adult Brain. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019034.	5.5	183
33	Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke. Neurobiology of Disease, 2015, 83, 1-15.	4.4	47
34	The age and genomic integrity of neurons after cortical stroke in humans. Nature Neuroscience, 2014, 17, 801-803.	14.8	108
35	A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science, 2014, 346, 237-241.	12.6	353
36	Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restorative Neurology and Neuroscience, 2014, 32, 547-558.	0.7	60

#	Article	IF	CITATIONS
37	Human Fetal Striatum-Derived Neural Stem (NS) Cells Differentiate to Mature Neurons In Vitro and In Vivo. Current Stem Cell Research and Therapy, 2014, 9, 338-346.	1.3	16
38	FoxJ1-expressing cells contribute to neurogenesis in forebrain of adult rats: Evidence from in vivo electroporation combined with piggyBac transposon. Experimental Cell Research, 2013, 319, 2790-2800.	2.6	14
39	Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain, 2013, 136, 3561-3577.	7.6	225
40	Proximity of brain infarcts to regions of endogenous neurogenesis and involvement of striatum in ischaemic stroke. European Journal of Neurology, 2013, 20, 473-479.	3.3	32
41	Norepinephrine improves the generation of hematopoietic cells from human pluripotent stem cells. Experimental Hematology, 2013, 41, S30.	0.4	0
42	Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiology of Disease, 2013, 52, 191-203.	4.4	109
43	Norepinephrine Improves The Generation Of Hematopoietic Cells From Human Pluripotent Stem Cells With Increased Functional Properties. Blood, 2013, 122, 1179-1179.	1.4	1
44	Expression analysis of pluripotency-associated genes in human fetal cortical and striatal neural stem cells during differentiation. Translational Neuroscience, 2012, 3, .	1.4	5
45	Meteorin is a Chemokinetic Factor in Neuroblast Migration and Promotes Stroke-Induced Striatal Neurogenesis. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 387-398.	4.3	38
46	Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience, 2012, 214, 159-170.	2.3	17
47	Cross-talk between neural stem cells and immune cells: the key to better brain repair?. Nature Neuroscience, 2012, 15, 1078-1087.	14.8	276
48	Societal Value of Stem Cell Therapy in Stroke – A Modeling Study. Cerebrovascular Diseases, 2012, 33, 532-539.	1.7	10
49	Embryonic Stem Cellâ€Derived Neural Stem Cells Fuse with Microglia and Mature Neurons. Stem Cells, 2012, 30, 2657-2671.	3.2	38
50	Stem cell repair of striatal ischemia. Progress in Brain Research, 2012, 201, 35-53.	1.4	21
51	Human-Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain. Stem Cells, 2012, 30, 1120-1133.	3.2	264
52	Adaptor Protein LNK Is a Negative Regulator of Brain Neural Stem Cell Proliferation after Stroke. Journal of Neuroscience, 2012, 32, 5151-5164.	3.6	11
53	Perturbed cellular response to brain injury during aging. Ageing Research Reviews, 2011, 10, 71-79.	10.9	95
54	Selective depletion of Mac-1-expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke. Experimental Neurology, 2011, 229, 391-398.	4.1	27

#	Article	IF	CITATIONS
55	Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment. Experimental Neurology, 2011, 229, 484-493.	4.1	54
56	Spatio-temporal dynamics, differentiation and viability of human neural stem cells after implantation into neonatal rat brain. European Journal of Neuroscience, 2011, 34, 382-393.	2.6	38
57	Cell Number and Timing of Transplantation Determine Survival of Human Neural Stem Cell Grafts in Stroke-Damaged Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 235-242.	4.3	161
58	Neural Stem Cell-Based Therapy for Ischemic Stroke. Translational Stroke Research, 2011, 2, 272-278.	4.2	18
59	Stem Cell Research in Stroke. Stroke, 2011, 42, 2369-2375.	2.0	163
60	Towards Clinical Application of Stem Cells in Neurodegenerative Disorders. Pancreatic Islet Biology, 2011, , 3-14.	0.3	1
61	Neurogenesis from Endogenous Neural Stem Cells After Stroke: A Future Therapeutic Target to Promote Functional Restoration?. , 2011, , 133-148.		1
62	Isolation and Generation of Neurosphere Cultures from Embryonic and Adult Mouse Brain. Methods in Molecular Biology, 2010, 633, 241-252.	0.9	40
63	Stem cells in human neurodegenerative disorders — time for clinical translation?. Journal of Clinical Investigation, 2010, 120, 29-40.	8.2	532
64	Neural Stem and Progenitor Cells Retain Their Potential for Proliferation and Differentiation into Functional Neurons Despite Lower Number in Aged Brain. Journal of Neuroscience, 2009, 29, 4408-4419.	3.6	188
65	Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, The, 2009, 8, 819-829.	10.2	97
66	Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia, 2009, 57, 136-152.	4.9	70
67	Longâ€ŧerm accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 2009, 57, 835-849.	4.9	320
68	Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neuroscience, 2009, 12, 259-267.	14.8	415
69	Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease. Trends in Pharmacological Sciences, 2009, 30, 260-267.	8.7	180
70	Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience, 2009, 158, 1021-1029.	2.3	675
71	Neurobiology of Postischemic Recuperation in the Aged Mammalian Brain. , 2009, , 403-451.		0
72	Pax6 promotes neurogenesis in human neural stem cells. Molecular and Cellular Neurosciences, 2008, 38, 616-628.	2.2	44

#	Article	IF	CITATIONS
73	MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Molecular and Cellular Neurosciences, 2008, 39, 356-371.	2.2	162
74	Suppression of Stroke-Induced Progenitor Proliferation in Adult Subventricular Zone by Tumor Necrosis Factor Receptor 1. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1574-1587.	4.3	94
75	Inflammation Regulates Functional Integration of Neurons Born in Adult Brain. Journal of Neuroscience, 2008, 28, 12477-12488.	3.6	134
76	The Response of the Aged Brain to Stroke: Too Much, Too Soon?. Current Neurovascular Research, 2007, 4, 216-227.	1.1	126
77	Long-Term Neuroblast Migration Along Blood Vessels in an Area With Transient Angiogenesis and Increased Vascularization After Stroke. Stroke, 2007, 38, 3032-3039.	2.0	373
78	Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in strokeâ€damaged rat striatum. European Journal of Neuroscience, 2007, 26, 605-614.	2.6	180
79	Generation of human cortical neurons from a new immortal fetal neural stem cell line. Experimental Cell Research, 2007, 313, 588-601.	2.6	45
80	Long-Term Neuroblast Migration Along Blood Vessels in an Area With Transient Angiogenesis and Increased Vascularization After Stroke. Stroke, 2007, 38, 3032-3039.	2.0	275
81	Environment Matters: Synaptic Properties of Neurons Born in the Epileptic Adult Brain Develop to Reduce Excitability. Neuron, 2006, 52, 1047-1059.	8.1	234
82	Intracerebral Infusion of Glial Cell Line-Derived Neurotrophic Factor Promotes Striatal Neurogenesis After Stroke in Adult Rats. Stroke, 2006, 37, 2361-2367.	2.0	188
83	Stem cells for the treatment of neurological disorders. Nature, 2006, 441, 1094-1096.	27.8	754
84	Persistent Production of Neurons from Adult Brain Stem Cells During Recovery after Stroke. Stem Cells, 2006, 24, 739-747.	3.2	658
85	Prostaglandin E2 and BDNF levels in rat hippocampus are negatively correlated with status epilepticus severity: No impact on survival of seizure-generated neurons. Neurobiology of Disease, 2006, 23, 23-35.	4.4	19
86	Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. Journal of Neuroscience Research, 2006, 84, 1630-1644.	2.9	100
87	Regulation of Stroke-Induced Neurogenesis in Adult Brain—Recent Scientific Progress. Cerebral Cortex, 2006, 16, i162-i167.	2.9	82
88	Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2006, 26, 9703-9712.	3.6	434
89	The Endocannabinoid System Promotes Astroglial Differentiation by Acting on Neural Progenitor Cells. Journal of Neuroscience, 2006, 26, 1551-1561.	3.6	225
90	Stem cell therapy for human brain disorders. Kidney International, 2005, 68, 1937-1939.	5.2	30

#	Article	IF	CITATIONS
91	The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy. BMC Neuroscience, 2005, 6, 27.	1.9	23
92	Microglia-derived tumor necrosis factor-α exaggerates death of newborn hippocampal progenitor cells in vitro. Journal of Neuroscience Research, 2005, 80, 789-797.	2.9	167
93	Stroke-Induced Neurogenesis in Aged Brain. Stroke, 2005, 36, 1790-1795.	2.0	219
94	The endocannabinoid system drives neural progenitor proliferation. FASEB Journal, 2005, 19, 1704-1706.	0.5	291
95	Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Experimental Neurology, 2005, 195, 71-80.	4.1	78
96	TNF-α antibody infusion impairs survival of stroke-generated neuroblasts in adult rat brain. Experimental Neurology, 2005, 196, 204-208.	4.1	84
97	Is there room for regeneration: Spontaneous versus induced neurogenesis. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S705-S705.	4.3	0
98	Recovery and Rehabilitation in Stroke. Stroke, 2004, 35, 2691-2694.	2.0	90
99	Stem cell therapy for human neurodegenerative disorders–how to make it work. Nature Medicine, 2004, 10, S42-S50.	30.7	824
100	Neurogenesis in Stroke and Epilepsy. Research and Perspectives in Neurosciences, 2004, , 139-146.	0.4	1
101	Neurogenesis after ischaemic brain insults. Current Opinion in Neurobiology, 2003, 13, 127-132.	4.2	350
102	Anterograde delivery of brainâ€derived neurotrophic factor to striatum via nigral transduction of recombinant adenoâ€associated virus increases neuronal death but promotes neurogenic response following stroke. European Journal of Neuroscience, 2003, 17, 2667-2678.	2.6	56
103	Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiology of Disease, 2003, 14, 542-556.	4.4	58
104	Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Experimental Neurology, 2003, 181, 224-230.	4.1	66
105	Generalization of rapidly recurring seizures is suppressed in mice lacking glial cell line-derived neurotrophic factor family receptor α2. Neuroscience, 2003, 118, 845-852.	2.3	4
106	Phenotypic and molecular identity of cells in the adult subventricular zone. Molecular and Cellular Neurosciences, 2003, 24, 741-752.	2.2	39
107	Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABAb autoreceptors in layer III of the entorhinal cortex. Neurobiology of Disease, 2003, 13, 203-212.	4.4	20
108	Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13632-13637.	7.1	1,406

#	Article	IF	CITATIONS
109	Intraventricular Infusion of TrkB-Fc Fusion Protein Promotes Ischemia-Induced Neurogenesis in Adult Rat Dentate Gyrus. Stroke, 2003, 34, 2710-2715.	2.0	48
110	BDNF-induced TrkB activation down-regulates the K+–Cl┠cotransporter KCC2 and impairs neuronal Clâ" extrusion. Journal of Cell Biology, 2002, 159, 747-752.	5.2	467
111	Suppression of Insult-Induced Neurogenesis in Adult Rat Brain by Brain-Derived Neurotrophic Factor. Experimental Neurology, 2002, 177, 1-8.	4.1	72
112	Neuropathological and Behavioral Consequences of Adeno-Associated Viral Vector-Mediated Continuous Intrastriatal Neurotrophin Delivery in a Focal Ischemia Model in Rats. Neurobiology of Disease, 2002, 9, 187-204.	4.4	79
113	Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 2002, 8, 963-970.	30.7	2,613
114	Upregulation of p75 Neurotrophin Receptor after Stroke in Mice Does Not Contribute to Differential Vulnerability of Striatal Neurons. Experimental Neurology, 2001, 169, 351-363.	4.1	39
115	Septal cholinergic neurons suppress seizure development in hippocampal kindling in rats: comparison with noradrenergic neurons. Neuroscience, 2001, 102, 819-832.	2.3	45
116	Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain. Neuroscience, 2001, 106, 27-41.	2.3	67
117	Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neuroscience Letters, 2001, 305, 169-172.	2.1	64
118	Changes in GABAB receptor immunoreactivity after recurrent seizures in rats. Neuroscience Letters, 2001, 315, 85-88.	2.1	24
119	<i>N</i> â€methylâ€< scp>dâ€aspartate receptorâ€mediated increase of neurogenesis in adult rat dentate gyrus following stroke. European Journal of Neuroscience, 2001, 14, 10-18.	2.6	277
120	Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats. Brain Research, 2001, 913, 117-132.	2.2	92
121	Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin. Proceedings of the United States of America, 2001, 98, 14006-14011.	7.1	103
122	Seizures induce widespread upregulation of cystatin B, the gene mutated in progressive myoclonus epilepsy, in rat forebrain neurons. European Journal of Neuroscience, 2000, 12, 1687-1695.	2.6	35
123	Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor alpha 2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12312-12317.	7.1	36
124	In Situ Hybridization Histochemistry. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2000, 5, Unit 2.7.	1.1	0
125	GDNF family ligands and receptors are differentially regulated after brain insults in the rat. European Journal of Neuroscience, 1999, 11, 1202-1216.	2.6	102
126	BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Therapy, 1999, 6, 1851-1866.	4.5	38

#	Article	IF	CITATIONS
127	Evidence for Neuroprotective Effects of Endogenous Brain-Derived Neurotrophic Factor after Global Forebrain Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1220-1228.	4.3	119
128	Differential regulation of mRNAs for neuropeptide Y and its receptor subtypes in widespread areas of the rat limbic system during kindling epileptogenesis. Molecular Brain Research, 1999, 72, 17-29.	2.3	61
129	Epileptogenesis induced by rapidly recurring seizures in genetically fast- but not slow-kindling rats. Brain Research, 1998, 789, 111-117.	2.2	26
130	Dynamic changes of brain-derived neurotrophic factor protein levels in the rat forebrain after single and recurring kindling-induced seizures. Neuroscience, 1998, 83, 351-362.	2.3	101
131	Focal cerebral ischemia in rats induces expression of p75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience, 1998, 84, 1113-1125.	2.3	108
132	BDNF Regulates Reelin Expression and Cajal-Retzius Cell Development in the Cerebral Cortex. Neuron, 1998, 21, 305-315.	8.1	151
133	Rapid Alterations of BDNF Protein Levels in the Rat Brain after Focal Ischemia: Evidence for Increased Synthesis and Anterograde Axonal Transport. Experimental Neurology, 1998, 154, 289-301.	4.1	127
134	Mossy fibre sprouting. NeuroReport, 1997, 8, 1193-1196.	1.2	52
135	Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10432-10437.	7.1	740
136	Suppressed Kindling Epileptogenesis and Perturbed BDNF and TrkB Gene Regulation in NT-3 Mutant Mice. Experimental Neurology, 1997, 145, 93-103.	4.1	52
137	Effects of cholinergic denervation on seizure development and neurotrophin messenger RNA regulation in rapid hippocampal kindling. Neuroscience, 1997, 80, 389-399.	2.3	47
138	Hyperglycemia and Hypercapnia Suppress BDNF Gene Expression in Vulnerable Regions after Transient Forebrain Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 1303-1308.	4.3	22
139	Immunolesioning of basal forebrain cholinergic neurons facilitates hippocampal kindling and perturbs neurotrophin messenger RNA regulation. Neuroscience, 1996, 70, 313-327.	2.3	55
140	Seizure-induced differential expression of messenger RNAs for neurotrophins and their receptors in genetically fast and slow kindling rats. Neuroscience, 1996, 75, 197-207.	2.3	46
141	Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat. Molecular Brain Research, 1996, 38, 139-144.	2.3	89
142	Delayed kindling development after rapidly recurring seizures: relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression. Brain Research, 1996, 712, 19-34.	2.2	76
143	Regulation of neuronal nitric oxide synthase mRNA levels in rat brain by seizure activity. NeuroReport, 1996, 7, 1335.	1.2	19
144	Co-expression of TrkB and TrkC receptors in CNS neurones suggests regulation by multiple neurotrophins. NeuroReport, 1995, 6, 769-772.	1.2	19

#	Article	IF	CITATIONS
145	Suppressed Epileptogenesis in BDNF Mutant Mice. Experimental Neurology, 1995, 133, 215-224.	4.1	244
146	Regulation of Brain-Derived Neurotrophic Factor Gene Expression after Transient Middle Cerebral Artery Occlusion with and without Brain Damage. Experimental Neurology, 1995, 136, 73-88.	4.1	234
147	Protective effects of BDNF and NT-3 but not PDCF against hypoglycemic injury to cultured striatal neurons. Experimental Neurology, 1995, 131, 1-10.	4.1	90
148	Neurotrophins in Kindling Epilepsy: Neuronal Protection or Induction of Sprouting and Epileptogenesis?. , 1995, , 417-438.		1
149	Seizure suppression in kindling epilepsy by intracerebral implants of GABA-but not by noradrenalinereleasing polymer matrices. Experimental Brain Research, 1994, 100, 385-394.	1.5	66
150	Seizure suppression in kindling epilepsy by intracerebral implants of GABA- but not by noradrenaline-releasing polymer matrices. Experimental Brain Research, 1994, 79, 385.	1.5	0
151	Brain Insults in Rats Induce Increased Expression of the BDNF Gene through Differential Use of Multiple Promoters. European Journal of Neuroscience, 1994, 6, 587-596.	2.6	108
152	Seizure Development and Noradrenaline Release in Kindling Epilepsy after Noradrenergic Reinnervation of the Subcortically Deafferented Hippocampus by Superior Cervical Ganglion or Fetal Locus Coeruleus Grafts. Experimental Neurology, 1994, 130, 351-361.	4.1	32
153	Neurotrophins and brain insults. Trends in Neurosciences, 1994, 17, 490-496.	8.6	510
154	Biphasic differential changes of GABAA receptor subunit mRNA levels in dentate gyrus granule cells following recurrent kindling-induced seizures. Molecular Brain Research, 1994, 23, 323-332.	2.3	72
155	BDNF makes cultured dentate granule cells more resistant to hypoglycaemic damage. NeuroReport, 1994, 5, 1241-1244.	1.2	52
156	Expression, Regulation and Receptor Distribution of Neurotrophins in the Mammalian Central Nervous System. , 1994, , 123-150.		0
157	Specific Functions of Grafted Locus Coeruleus Neurons in the Kindling Model of Epilepsy. Experimental Neurology, 1993, 122, 143-154.	4.1	20
158	Differential regulation of N-methyl-d-aspartate receptor subunit messenger RNAs in kindling-induced epileptogenesis. Neuroscience, 1993, 57, 307-318.	2.3	89
159	Rapid increase of BDNF mRNA levels in cortical neurons following spreading depression: regulation by glutamatergic mechanisms independent of seizure activity. Molecular Brain Research, 1993, 19, 277-286.	2.3	109
160	Regulation of neurotrophin and traka, trkb and trkc tyrosine kinase receptor messenger RNA expression in kindling. Neuroscience, 1993, 53, 433-446.	2.3	197
161	Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron, 1993, 10, 151-164.	8.1	394
162	Coexpression of neurotrophins and their receptors in neurons of the central nervous system Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6711-6715.	7.1	232

#	Article	IF	CITATIONS
163	Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 648-652.	7.1	485
164	Widespread increase of nerve growth factor protein in the rat forebrain after kindling-induced seizures. Brain Research, 1992, 587, 338-342.	2.2	85
165	Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron, 1991, 7, 165-176.	8.1	613