Govindasamy Sekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lodine-Promoted Controlled and Selective Oxidation of (Aryl)(Heteroaryl)Methanes. Journal of Organic Chemistry, 2022, 87, 5424-5429.	3.2	6
2	Transition Metal-Free Iodine-Catalyzed Denitrative C–S Cross-Coupling: An Atypical Route to Access Thiochromane Derivatives. Journal of Organic Chemistry, 2022, 87, 7536-7546.	3.2	9
3	Synergistic Dual Amine/Transition Metal Catalysis: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	2.4	7
4	Visible-Light-Driven Halogen-Bond-Assisted Direct Synthesis of Heteroaryl Thioethers Using Transition-Metal-Free One-Pot C–I Bond Formation/C–S Cross-Coupling Reaction. Journal of Organic Chemistry, 2021, 86, 2570-2581.	3.2	45
5	Metal-catalyzed C–S bond formation using sulfur surrogates. Organic and Biomolecular Chemistry, 2021, 19, 1459-1482.	2.8	65
6	Copper-catalyzed domino synthesis of multi-substituted benzo[<i>b</i>]thiophene through radical cyclization using xanthate as a sulfur surrogate. Chemical Communications, 2021, 57, 4512-4515.	4.1	9
7	Visible Light Mediated Photocatalyst Free C–S Cross Coupling: Domino Synthesis of Thiochromane Derivatives via Photoinduced Electron Transfer. Organic Letters, 2021, 23, 3115-3119.	4.6	35
8	KO ^{<i>t</i>} Bu-Promoted Halogen-Bond-Assisted Intramolecular C–S Cross-Coupling of <i>o</i> -lodothioanilides for the Synthesis of 2-Substituted Benzothiazoles. Journal of Organic Chemistry, 2021, 86, 15825-15834.	3.2	9
9	Palladium Nanoparticle-Catalyzed Stereoselective Domino Synthesis of All-Carbon Tetrasubstituted Olefin Containing Oxindoles via Carbopalladation/C–H Activation. Journal of Organic Chemistry, 2020, 85, 10514-10524.	3.2	11
10	Palladium Nanoparticle-Catalyzed Stereoselective Domino Synthesis of 3-Allylidene-2(3 <i>H</i>)-oxindoles and 3-Allylidene-2(3 <i>H</i>)-benzofuranones. Journal of Organic Chemistry, 2020, 85, 4682-4694.	3.2	19
11	Cu-Catalyzed one-pot synthesis of thiochromeno-quinolinone and thiochromeno-thioflavone via oxidative double hetero Michael addition using in situ generated nucleophiles. Chemical Communications, 2020, 56, 8826-8829.	4.1	10
12	Iodonium Ion—Catalyzed Domino Synthesis of <i>Z</i> -Selective α,β-Diphenylthio Enones from Easily Accessible Secondary Alcohols. Journal of Organic Chemistry, 2020, 85, 5895-5906.	3.2	8
13	Copper-catalyzed double C–S bond formation for the synthesis of 2-acyldihydrobenzo[<i>b</i>]thiophenes and 2-acylbenzo[<i>b</i>]thiophenes. Chemical Communications, 2020, 56, 10906-10909.	4.1	9
14	Domino Synthesis of Thioflavones and Thioflavothiones by Regioselective Ring Opening of Donor–Acceptor Cyclopropane Using In-Situ-Generated Thiolate Anions. Organic Letters, 2019, 21, 6648-6652.	4.6	18
15	Palladium Nanoparticlesâ€Catalyzed Synthesis of Indanone Derivatives via Intramolecular Reductive Heck Reaction. Advanced Synthesis and Catalysis, 2019, 361, 4581-4595.	4.3	15
16	Ligandâ€Free and Reusable Palladium Nanoparticlesâ€Catalyzed Alkylation of 2â€Alkylazaarenes with Activated Ketones under Neutral Conditions. Advanced Synthesis and Catalysis, 2019, 361, 4255-4277.	4.3	10
17	Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis. Journal of Catalysis, 2019, 377, 673-683.	6.2	18
18	Copper(II)-Catalyzed Domino Synthesis of Indolo[3,2- <i>c</i>]quinolinones via Selective Carbonyl Migration. Organic Letters, 2019, 21, 867-871.	4.6	17

#	Article	IF	CITATIONS
19	Synthesis of 1,3â€Disubstituted Imidazo[1,5â€ <i>a</i>]pyridines through Oxidative Câ€N Bond Formation from Arylâ€2â€pyridylmethanols and Their Fluorescent Study. ChemistrySelect, 2019, 4, 5651-5655.	1.5	9
20	NBS-mediated synthesis of β-keto sulfones from benzyl alcohols and sodium arenesulfinates. Tetrahedron, 2019, 75, 3479-3484.	1.9	9
21	Halogen Bond-Assisted Electron-Catalyzed Atom Economic Iodination of Heteroarenes at Room Temperature. Journal of Organic Chemistry, 2019, 84, 6642-6654.	3.2	27
22	Selective oxidation of alkylarenes to aromatic acids/ketone in water by using reusable binaphthyl stabilized Pt nanoparticles (Pt-BNP) as catalyst. Applied Catalysis B: Environmental, 2019, 250, 325-336.	20.2	19
23	Luxury of <i>N</i> â€Tosylhydrazones in Transitionâ€Metalâ€Free Transformations. Advanced Synthesis and Catalysis, 2019, 361, 1172-1207.	4.3	55
24	Proton-Coupled Electron Transfer: Transition-Metal-Free Selective Reduction of Chalcones and Alkynes Using Xanthate/Formic Acid. Organic Letters, 2019, 21, 2650-2653.	4.6	29
25	Zn(OTf) ₂ -catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides. Organic and Biomolecular Chemistry, 2019, 17, 3921-3933.	2.8	13
26	A covalently linked dimer of [Ag25(DMBT)18]â^. Chemical Communications, 2019, 55, 5025-5028.	4.1	17
27	An efficient synthesis of benzothiazole using tetrabromomethane as a halogen bond donor catalyst. Organic and Biomolecular Chemistry, 2019, 17, 9743-9756.	2.8	17
28	Reusable Palladium Nanoparticles Catalyzed Oxime Ether Directed Mono <i>Ortho</i> â€Hydroxylation under Phosphine Free Neutral Condition. Advanced Synthesis and Catalysis, 2019, 361, 510-519.	4.3	17
29	Copper-Catalyzed One-Pot Synthesis of 2-Arylthiochromenones: An in Situ Recycle of Waste Byproduct as Useful Reagent. Organic Letters, 2019, 21, 75-79.	4.6	32
30	Phosphine-Free and Reusable Palladium Nanoparticles-Catalyzed Domino Strategy: Synthesis of Indanone Derivatives. Journal of Organic Chemistry, 2018, 83, 4692-4702.	3.2	23
31	Copper-Catalyzed Base-Controlled Diastereoselective Synthesis of Tetraarylethanes from 2-Benzylpyridines. Synthesis, 2018, 50, 1275-1283.	2.3	2
32	Dual Role of Nâ€Bromosuccinimide as Oxidant and Succinimide Surrogate in Domino Oneâ€Pot Oxidative Amination of Benzyl Alcohols for the Synthesis of α–Imido Ketones. ChemistrySelect, 2018, 3, 12524-12529.	1.5	4
33	Metalâ€Free Halogen(I) Catalysts for the Oxidation of Aryl(heteroaryl)methanes to Ketones or Esters: Selectivity Control by Halogen Bonding. Chemistry - A European Journal, 2018, 24, 14171-14182.	3.3	36
34	Recent developments in functionalization of acyclic α-keto amides. Organic and Biomolecular Chemistry, 2018, 16, 7068-7083.	2.8	29
35	Friedel–Crafts Hydroxyalkylation of Indoles with α-Keto Amides using Reusable K ₃ PO ₄ / <i>n</i> Bu ₄ NBr Catalytic System in Water. Journal of Organic Chemistry, 2018, 83, 8827-8839.	3.2	21
36	Domino Oxidative Esterification of 2â€Oxo Alcohol Using 2â€lodoxybenzoic Acid/I ₂ : A Route to Synthesize <i>α</i> â€Ketoester. ChemistrySelect, 2018, 3, 8167-8170.	1.5	3

#	Article	IF	CITATIONS
37	Stable Pd-nanoparticles catalyzed domino C H activation/C N bond formation strategy: An access to phenanthridinones. Journal of Catalysis, 2018, 366, 176-188.	6.2	23
38	Dictating the Reactivity of η ³ -Oxoallyl Pd-Intermediate toward 5- <i>exo-trig</i> Cyclization: Access to Indano-spirooxindoles. Journal of Organic Chemistry, 2018, 83, 11298-11308.	3.2	10
39	Domino Synthesis of Thiochromenes through Cu-Catalyzed Incorporation of Sulfur Using Xanthate Surrogate. Journal of Organic Chemistry, 2017, 82, 1936-1942.	3.2	29
40	CBr ₄ as a Halogen Bond Donor Catalyst for the Selective Activation of Benzaldehydes to Synthesize α,β-Unsaturated Ketones. Organic Letters, 2017, 19, 1244-1247.	4.6	73
41	A Mild and Chemoselective Hydrosilylation of αâ€Keto Amides by Using a Cs ₂ CO ₃ /PMHS/2â€MeTHF System. European Journal of Organic Chemistry, 2017, 2017, 4883-4890.	2.4	27
42	NIS Mediated Cross-Coupling of C(sp ²)–H and N–H Bonds: A Transition-Metal-Free Approach toward Indolo[1,2- <i>a</i>]quinazolinones. Journal of Organic Chemistry, 2017, 82, 7657-7665.	3.2	21
43	Synthesis of 2-Acylbenzo[<i>b</i>]thiophenes via Cu-Catalyzed α-C–H Functionalization of 2-Halochalcones Using Xanthate. Organic Letters, 2017, 19, 1670-1673.	4.6	42
44	Palladiumâ€Nanoparticles atalyzed Oxidative Annulation of Benzamides with Alkynes for the Synthesis of Isoquinolones. Advanced Synthesis and Catalysis, 2017, 359, 1947-1958.	4.3	36
45	Zinc-catalyzed chemoselective alkylation of α-keto amides with 2-alkylazaarenes. Organic and Biomolecular Chemistry, 2017, 15, 691-700.	2.8	18
46	A Transitionâ€Metalâ€Free and Baseâ€Mediated Carbene Insertion into Sulfurâ€Sulfur and Seleniumâ€Selenium Bonds: An Easy Access to Thio―and Selenoacetals. Advanced Synthesis and Catalysis, 2017, 359, 698-708.	4.3	18
47	Cover Feature: Role of Lewis-Base-Coordinated Halogen(I) Intermediates in Organic Synthesis: The Journey from Unstable Intermediates to Versatile Reagents (Eur. J. Org. Chem. 37/2017). European Journal of Organic Chemistry, 2017, 2017, 5422-5422.	2.4	0
48	Front Cover: A Mild and Chemoselective Hydrosilylation of α-Keto Amides by Using a Cs2 CO3 /PMHS/2-MeTHF System (Eur. J. Org. Chem. 33/2017). European Journal of Organic Chemistry, 2017, 2017, 4871-4871.	2.4	0
49	Role of Lewisâ€Baseâ€Coordinated Halogen(I) Intermediates in Organic Synthesis: The Journey from Unstable Intermediates to Versatile Reagents. European Journal of Organic Chemistry, 2017, 2017, 5497-5518.	2.4	44
50	Halogen-bonded iodonium ion catalysis: a route to α-hydroxy ketones via domino oxidations of secondary alcohols and aliphatic C–H bonds with high selectivity and control. Chemical Communications, 2017, 53, 10942-10945.	4.1	26
51	Stereoselective Construction of α-Tetralone-Fused Spirooxindoles via Pd-Catalyzed Domino Carbene Migratory Insertion/Conjugate Addition Sequence. Organic Letters, 2017, 19, 5280-5283.	4.6	21
52	Stable and Reusable Palladium Nanoparticlesâ€Catalyzed Conjugate Addition of Aryl Iodides to Enones: Route to Reductive Heck Products. Advanced Synthesis and Catalysis, 2017, 359, 3741-3751.	4.3	38
53	Potassium Phosphateâ€Catalyzed Chemoselective Reduction of αâ€Keto Amides: Route to Synthesize Passerini Adducts and 3â€Phenyloxindoles. Advanced Synthesis and Catalysis, 2016, 358, 643-652. 	4.3	29
54	Stable and Reusable Binaphthyl‣upported Palladium Catalyst for Aminocarbonylation of Aryl Iodides. Advanced Synthesis and Catalysis, 2016, 358, 314-320.	4.3	36

#	Article	IF	CITATIONS
55	An Efficient, Stable and Reusable Palladium Nanocatalyst: Chemoselective Reduction of Aldehydes with Molecular Hydrogen in Water. Advanced Synthesis and Catalysis, 2016, 358, 1694-1698.	4.3	26
56	Palladium nanoparticles catalyzed aroylation of NH-sulfoximines with aryl iodides. RSC Advances, 2016, 6, 37226-37235.	3.6	17
57	Sulfoximinocarbonylation of aryl halides using heterogeneous Pd/C catalyst. RSC Advances, 2016, 6, 97152-97159.	3.6	17
58	Bimetallic chiral nanoparticles as catalysts for asymmetric synthesis. Tetrahedron Letters, 2016, 57, 5168-5178.	1.4	15
59	Iron-Catalyzed One-Pot N-Aroylation of NH-Sulfoximines with Methylarenes through Benzylic C–H Bond Oxidation. Synthesis, 2016, 48, 1541-1549.	2.3	24
60	Stable and reusable platinum nanocatalyst: an efficient chemoselective reduction of nitroarenes in water. Tetrahedron Letters, 2016, 57, 1410-1413.	1.4	15
61	An efficient synthesis of iminoquinones by a chemoselective domino ortho-hydroxylation/oxidation/imidation sequence of 2-aminoaryl ketones. Organic and Biomolecular Chemistry, 2016, 14, 3053-3060.	2.8	12
62	lodine mediated intramolecular C2-amidative cyclization of indoles: a facile access to indole fused tetracycles. Organic and Biomolecular Chemistry, 2016, 14, 2297-2305.	2.8	43
63	Chemoselective Reductive Deoxygenation and Reduction of αâ€Keto Amides by using a Palladium Catalyst. Advanced Synthesis and Catalysis, 2015, 357, 3273-3283.	4.3	22
64	Enantioselective Synthesis of αâ€Hydroxy Amides and βâ€Amino Alcohols from αâ€Keto Amides. Chemistry - A European Journal, 2015, 21, 18584-18588.	3.3	32
65	Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C–S Bond Formations Using Xanthate as Sulfur Source. Organic Letters, 2015, 17, 6006-6009.	4.6	66
66	A Versatile and One-Pot Strategy to Synthesize α-Amino Ketones from Benzylic Secondary Alcohols Using <i>N</i> -Bromosuccinimide. Organic Letters, 2015, 17, 406-409.	4.6	75
67	An efficient and metal free synthesis of benzylpyridines using HI through the deoxygenation reaction. RSC Advances, 2015, 5, 58790-58797.	3.6	10
68	Iron atalyzed Direct Synthesis of Amides from Methylarenes. Advanced Synthesis and Catalysis, 2015, 357, 1437-1445.	4.3	23
69	Copper-Catalyzed One-Pot Synthesis of α-Ketoamides from 1-Arylethanols. Synthesis, 2015, 47, 726-736.	2.3	18
70	Metal free one-pot synthesis of α-ketoamides from terminal alkenes. RSC Advances, 2015, 5, 47265-47269.	3.6	41
71	Pd-catalyzed direct C2-acylation and C2,C7-diacylation of indoles: pyrimidine as an easily removable C–H directing group. RSC Advances, 2015, 5, 28292-28298.	3.6	26
72	Palladium-Catalyzed Intermolecular Carbene Insertion Prior to Intramolecular Heck Cyclization: Synthesis of 2-Arylidene-3-aryl-1-indanones. Organic Letters, 2015, 17, 5448-5451.	4.6	35

#	Article	IF	CITATIONS
73	Metal free synthesis of α-keto amides from 2-hydroxy acetophenones through domino alcohol oxidation–oxidative amidation reaction. Tetrahedron Letters, 2015, 56, 6323-6326.	1.4	22
74	Stable palladium nanoparticles catalyzed synthesis of benzonitriles using K4[Fe(CN)6]. Tetrahedron Letters, 2015, 56, 175-178.	1.4	30
75	An efficient synthesis of pyrido[1,2-a]indoles through aza-Nazarov type cyclization. Chemical Communications, 2015, 51, 1701-1704.	4.1	41
76	Metal free chemoselective reduction of \hat{I}_{\pm} -keto amides using TBAF as catalyst. RSC Advances, 2014, 4, 61077-61085.	3.6	31
77	Ironâ€TEMPOâ€Catalyzed Domino Aerobic Alcohol Oxidation/Oxidative Crossâ€Dehydrogenative Coupling for the Synthesis of αâ€Keto Amides. European Journal of Organic Chemistry, 2014, 2014, 7451-7457.	2.4	35
78	Ironâ€Catalyzed C–H Bond Functionalization for the Exclusive Synthesis of Pyrido[1,2â€ <i>a</i>]indoles or Triarylmethanols. European Journal of Organic Chemistry, 2014, 2014, 8055-8063.	2.4	34
79	Isolation and Characterization of a Trinuclear Cobalt Complex Containing Trigonal-Prismatic Cobalt in Secondary Alcohol Aerobic Oxidation. Organometallics, 2014, 33, 1665-1671.	2.3	17
80	Efficient Synthesis of Polysubstituted Olefins Using Stable Palladium Nanocatalyst: Applications in Synthesis of Tamoxifen and Isocombretastatin A4. Organic Letters, 2014, 16, 3856-3859.	4.6	56
81	An efficient route to synthesize isatins by metal-free, iodine-catalyzed sequential C(sp ³)–H oxidation and intramolecular C–N bond formation of 2′-aminoacetophenones. Organic and Biomolecular Chemistry, 2014, 12, 8512-8518.	2.8	45
82	Chemoselective reduction of α-keto amides using nickel catalysts. Chemical Communications, 2014, 50, 7881-7884.	4.1	56
83	Enantioselective Oxidative Coupling of 2â€Naphthol Derivatives by Copperâ€(<i>R</i>)â€1,1′â€Binaphthylâ€2,2′â€diamineâ€TEMPO Catalyst. Advanced Synthesis and Catalys 2803-2808.	si s, 2 013, 1	3 5 5,
84	Cu-catalyzed in situ generation of thiol using xanthate as a thiol surrogate for the one-pot synthesis of benzothiazoles and benzothiophenes. Organic and Biomolecular Chemistry, 2013, 11, 1659.	2.8	54
85	Palladium nanoparticles stabilized by metal–carbon covalent bond: An efficient and reusable nanocatalyst in cross-coupling reactions. Catalysis Communications, 2013, 39, 50-54.	3.3	52
86	Iron(II) Chloride–1,1′-Binaphthyl-2,2′-diamine (FeCl2–BINAM) Complex Catalyzed Domino Synthesis of Bisindolylmethanes from Indoles and Primary Alcohols. Synthesis, 2013, 46, 101-109.	2.3	15
87	An efficient synthesis of α-hydroxy phosphonates and 2-nitroalkanols using Ba(OH)2 as catalyst. Applied Catalysis A: General, 2012, 441-442, 119-123.	4.3	21
88	Domino aziridine ring opening and Buchwald–Hartwig type coupling-cyclization by palladium catalyst. Tetrahedron, 2012, 68, 9090-9094.	1.9	22
89	Synthesis of an unusual dinuclear chiral iron complex and its application in asymmetric hydrophosphorylation of aldehydes. Organic and Biomolecular Chemistry, 2012, 10, 5347.	2.8	38
90	d-Glucosamine as an efficient ligand for the copper-catalyzed selective synthesis of anilines from aryl halides and NaN3. Green Chemistry, 2011, 13, 2326.	9.0	41

#	Article	IF	CITATIONS
91	Chiral cobalt-catalyzed enantioselective aerobic oxidation of \hat{I}_{\pm} -hydroxy esters. Chemical Communications, 2011, 46, 7235-7.	4.1	41
92	d-Glucosamine as a green ligand for copper catalyzed synthesis of primary aryl amines from aryl halides and ammonia. Chemical Communications, 2011, 47, 5076.	4.1	61
93	d-Glucose as green ligand for selective copper-catalyzed phenol synthesis from aryl halides with an easy catalyst removal. Chemical Communications, 2011, 47, 6692.	4.1	88
94	Cu-Catalyzed One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Coupling of Aryl Halides Using a Thiol Precursor. Organic Letters, 2011, 13, 1008-1011.	4.6	158
95	Chiral Zn-catalyzed aerobic oxidative kinetic resolution of α-hydroxy ketones. Tetrahedron: Asymmetry, 2011, 22, 512-517.	1.8	18
96	Synthesis of optically active 1,4-benzoxazine derivatives using palladium-catalyzed coupling kinetic resolution. Tetrahedron: Asymmetry, 2011, 22, 948-954.	1.8	6
97	Zinc-catalyzed aerobic oxidation of benzoins and its extension to enantioselective oxidation. Tetrahedron Letters, 2011, 52, 692-695.	1.4	39
98	An Efficient Copper(I) Iodide Catalyzed Synthesis of Diaryl Selenides through CAr-Se Bond Formation Using Solvent Acetonitrile as Ligand. Synthesis, 2011, 2011, 2297-2302.	2.3	5
99	Copper(I)-BINOL Catalyzed Domino Synthesis of 1,4-Benzoxathiines through -O Bond Formation. Organic Chemistry International, 2011, 2011, 1-7.	1.0	3
100	Halogenative kinetic resolution of Î ² -amido alcohols: chiral BINAP-mediated SN2 displacement of hydroxy groups by chlorides with inversion of stereochemistry. Tetrahedron: Asymmetry, 2010, 21, 780-785.	1.8	6
101	Halogenative kinetic resolution of β-aryloxy cyclic alcohols: chiral BINAP-mediated SN2 displacement of hydroxy groups by chlorides with inversion of stereochemistry. Tetrahedron: Asymmetry, 2010, 21, 2177-2182.	1.8	0
102	Domino synthesis of 2-arylbenzo[b]furans by copper(II)-catalyzed coupling of o-iodophenols and aryl acetylenes. Tetrahedron, 2010, 66, 2077-2082.	1.9	52
103	An efficient copper(II)-catalyzed synthesis of benzothiazoles through intramolecular coupling-cyclization of N-(2-chlorophenyl)benzothioamides. Tetrahedron Letters, 2010, 51, 5009-5012.	1.4	74
104	Copper(I)-Catalyzed Intramolecular Caryl-O Bond-Forming Cyclization for the Synthesis of 1,4-Benzodioxines and Its Application in the Total Synthesis of Sweetening Isovanillins. Synthesis, 2010, 2010, 3509-3519.	2.3	1
105	An Efficient, Mild and Intermolecular Ullmann-Type Synthesis of Thioethers Catalyzed by a Diol-Copper(I) Complex. Synthesis, 2010, 2010, 79-84.	2.3	5
106	Synthesis of Benzoxazoles by an Efficient Ullmann-Type Intramolecular C(aryl)-O Bond-Forming Coupling Cyclization with a BINAM-Copper(II) Catalyst. Synthesis, 2010, 2010, 579-586.	2.3	6
107	Efficient CuCl-Catalyzed Selective and Direct Oxidation of β- and γ-Substituted Aliphatic Primary Alcohols to Carboxylic Acids. Synthetic Communications, 2010, 40, 2822-2829.	2.1	4
108	Copper(I)-Catalyzed Caryl-Calkynyl Bond Formation of Aryl Iodides with Terminal Alkynes. Synthesis, 2009, 2009, 2785-2789.	2.3	4

#	Article	IF	CITATIONS
109	Galactose Oxidase Model: Biomimetic Enantiomerâ€Differentiating Oxidation of Alcohols by a Chiral Copper Complex. Chemistry - A European Journal, 2009, 15, 1086-1090.	3.3	44
110	Chiral Cobaltâ€Catalyzed Enantiomerâ€Differentiating Oxidation of Racemic Benzoins by Using Molecular Oxygen as Stoichiometric Oxidant. Chemistry - A European Journal, 2009, 15, 5424-5427.	3.3	41
111	An efficient copper(I) complex catalyzed Sonogashira type cross-coupling of aryl halides with terminal alkynes. Tetrahedron Letters, 2009, 50, 2865-2869.	1.4	73
112	An efficient, mild, and selective Ullmann-type N-arylation of indoles catalyzed by copper(I) complex. Tetrahedron, 2009, 65, 4619-4624.	1.9	42
113	An enantiopure galactose oxidase model: synthesis of chiral amino alcohols through oxidative kinetic resolution catalyzed by a chiral copper complex. Tetrahedron: Asymmetry, 2009, 20, 497-502.	1.8	30
114	An efficient intermolecular C(aryl)–S bond forming reaction catalyzed by BINAM–copper(II) complex. Tetrahedron Letters, 2009, 50, 1411-1415.	1.4	73
115	General, Mild, and Intermolecular Ullmann-Type Synthesis of Diaryl and Alkyl Aryl Ethers Catalyzed by Diolâ~'Copper(I) Complex. Journal of Organic Chemistry, 2009, 74, 3675-3679.	3.2	116
116	Chiral iron complex catalyzed enantioselective oxidation of racemic benzoins. Chemical Communications, 2009, , 3288.	4.1	60
117	Highly Efficient Copper-Catalyzed Domino Ring Opening and Goldberg Coupling Cyclization for the Synthesis of 3,4-Dihydro-2 <i>H</i> -1,4-benzoxazines. Organic Letters, 2009, 11, 1923-1926.	4.6	85
118	An efficient copper-catalyzed synthesis of hexahydro-1H- phenothiazines. Organic and Biomolecular Chemistry, 2009, 7, 5091.	2.8	36
119	CuCl catalyzed oxidation of aldehydes to carboxylic acids with aqueous tert-butyl hydroperoxide under mild conditions. Tetrahedron Letters, 2008, 49, 1083-1086.	1.4	61
120	An efficient BINAM–copper(II) catalyzed Ullmann-type synthesis of diaryl ethers. Tetrahedron Letters, 2008, 49, 1057-1061.	1.4	64
121	CuCl catalyzed selective oxidation of primary alcohols to carboxylic acids with tert-butyl hydroperoxide at room temperature. Tetrahedron Letters, 2008, 49, 2457-2460.	1.4	49
122	An efficient intermolecular BINAM–copper(I) catalyzed Ullmann-type coupling of aryl iodides/bromides with aliphatic alcohols. Tetrahedron Letters, 2008, 49, 3147-3151.	1.4	53
123	Aerobic, Chemoselective Oxidation of Alcohols to Carbonyl Compounds Catalyzed by a DABCOâ€Copper Complex under Mild Conditions. Advanced Synthesis and Catalysis, 2007, 349, 2253-2258.	4.3	145
124	Catalyst-Controlled Stereoselective Combinatorial Synthesis. Angewandte Chemie - International Edition, 2003, 42, 4254-4257.	13.8	50
125	Nonenzymatic kinetic resolution of β-amino alcohols: chiral BINAP mediated SN2 displacement of hydroxy groups by halogens through formation of an aziridinium ion intermediate. Chemical Communications, 2001, , 1314-1315.	4.1	13
126	Nonenzymatic Kinetic Resolution of Secondary Alcohols:Â Enantioselective SN2 Displacement of Hydroxy Groups by Halogens in the Presence of Chiral BINAP. Journal of the American Chemical Society, 2001, 123, 3603-3604.	13.7	39

#	Article	IF	CITATIONS
127	An efficient method for the cleavage of aziridines using hydroxyl compounds. Tetrahedron Letters, 2000, 41, 4677-4679.	1.4	76
128	An efficient method for opening nonactivated aziridines with TMS azide: application in the synthesis of chiral 1,2-diaminocyclohexane. Tetrahedron Letters, 2000, 41, 10079-10083.	1.4	51
129	Enantiomerically pure N-aryl-β-amino alcohols by enzymatic resolution. Tetrahedron: Asymmetry, 1999, 10, 3663-3666.	1.8	11
130	An Efficient Method for Cleavage of Epoxides with Aromatic Amines. Journal of Organic Chemistry, 1999, 64, 287-289.	3.2	163
131	Efficient Method for Cleavage of Aziridines with Aromatic Amines. Journal of Organic Chemistry, 1999, 64, 2537-2539.	3.2	71
132	Asymmetric Kharasch Reaction:  Catalytic Enantioselective Allylic Oxidation of Olefins Using Chiral Pyridine Bis(diphenyloxazoline)â^'Copper Complexes and tert-Butyl Perbenzoate,. Journal of Organic Chemistry, 1998, 63, 2961-2967.	3.2	128
133	Cu(OTf)2 - DBN/DBU complex as an efficient catalyst for allylic oxidation of olefins with tert-butyl perbenzoate. Tetrahedron Letters, 1996, 37, 8435-8436.	1.4	23