Krishna N Ganesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278735/publications.pdf

Version: 2024-02-01

195 papers	1,643 citations	279798 23 h-index	315739 38 g-index
195 all docs	195 docs citations	195 times ranked	1358 citing authors

#	Article	IF	CITATIONS
1	Silver soldering of PNA:DNA duplexes: assembly of a triple duplex from bimodal PNAs with all-C on one face. Chemical Communications, 2022, 58, 4083-4086.	4.1	2
2	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0
3	<i>ACS Omega</i> : 2022 Spring Forward, 2021 Look Backâ€ ⁻ . ACS Omega, 2022, 7, 12448-12452.	3.5	1
4	Peptide Nucleic Acid with Double Face: Homothymine–Homocytosine Bimodal Cα-PNA (<i>bm</i> Forms a Double Duplex of the <i>bm</i> -PNA ₂ :DNA Triplex. Journal of Organic Chemistry, 2021, 86, 414-428.	3.2	15
5	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	O
6	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
7	Gem-dimethyl peptide nucleic acid $(\hat{l}\pm \hat{l}^2/\hat{l}^3-\langle i\rangle gdm\langle i\rangle-PNA)$ monomers: synthesis and the role of $\langle i\rangle gdm\langle i\rangle-substituents$ in preferential stabilisation of $\langle i\rangle Z\langle i\rangle/\langle i\rangle E\langle i\rangle$ -rotamers. Organic and Biomolecular Chemistry, 2021, 19, 6534-6545.	2.8	5
8	Deepening Our Roots and Growing Wings. ACS Omega, 2021, 6, 4506-4510.	3.5	1
9	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	2.3	4
10	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	4.6	6
11	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Emp; Technology, 2021, 55, 8459-8463.	10.0	12
12	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	2.7	18
13	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	3.2	4
14	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	6.7	2
15	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	8.7	7
16	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	3.7	3
17	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	3.5	7
18	Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl $\hat{Cl}^3(\langle i\rangle S\langle i\rangle/\langle i\rangle R\langle i\rangle)$ -Bimodal Peptide Nucleic Acids with $dA\langle sub\rangle 8\langle sub\rangle/dG\langle sub\rangle 6\langle sub\rangle$ and the Cell Permeability of Bimodal Peptide Nucleic Acids. ACS Omega, 2021, 6, 19757-19770.	3.5	8

#	Article	IF	Citations
19	Spiegelmeric 4 R / S â€hydroxy/aminoâ€L/Dâ€prolyl collagen peptides: conformation and morphology of selfâ€assembled structures. Peptide Science, 2020, 112, e24140.	1.8	3
20	Silver assisted stereo-directed assembly of branched peptide nucleic acids into four-point nanostars. Nanoscale, 2020, 12, 21665-21673.	5.6	3
21	\hat{C}^3 (<i>S</i> / <i>R</i>)-Bimodal Peptide Nucleic Acids (\hat{C}^3 - <i>bm</i> -PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. Journal of Organic Chemistry, 2020, 85, 13680-13693.	3.2	20
22	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
23	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
24	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5 . 2	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
26	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3 . 4	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
28	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
34	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	O
38	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
41	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
42	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
43	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
44	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
45	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
46	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
47	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
48	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
49	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
50	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
51	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
52	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
53	Confronting Racism in Chemistry Journals. Energy & Samp; Fuels, 2020, 34, 7771-7773.	5.1	0
54	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0

#	Article	IF	Citations
55	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	3.5	2
56	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
58	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
61	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
62	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & amp; Interfaces, 2020, 12, 20147-20148.	8.0	5
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
64	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
67	Receptor-Specific Delivery of Peptide Nucleic Acids Conjugated to Three Sequentially Linked <i>N</i> -Acetyl Galactosamine Moieties into Hepatocytes. Journal of Organic Chemistry, 2020, 85, 8812-8824.	3.2	19
68	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
69	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
70	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
71	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
72	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0

#	Article	IF	Citations
73	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	О
74	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
75	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
76	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
77	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
78	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
79	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	О
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
81	Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes. Organic Letters, 2020, 22, 5255-5260.	4.6	21
82	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
83	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	8.0	13
84	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
85	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
86	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
87	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
88	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
89	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
90	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	O
92	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
93	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	O
94	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
95	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	O
96	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
97	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
98	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
99	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5. 2	0
100	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
101	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
102	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
103	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
104	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
105	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
106	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
108	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	O
110	<i>ACS Omega</i> : 2019 in Hindsight with a 2020 Vision. ACS Omega, 2020, 5, 1726-1729.	3.5	1
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	O
112	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
113	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
114	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
116	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Emp; Technology, 2020, 54, 5307-5308.	10.0	0
118	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
119	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
120	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
122	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
124	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5 . 4	0

#	Article	IF	Citations
127	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	O
128	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
132	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
133	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
134	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
135	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
136	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
137	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
138	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
139	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
140	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
141	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
142	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
143	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
144	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
146	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
147	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	O
148	Conformation and Morphology of 4-(NH $<$ sub $>2<$ /sub $>$ /OH)-Substituted $<$ scp $>$ $<$ scp $>$ $<$ scp $>$ $<$ scp $>$ cscp $>$	3.5	2
149	<i>ACS Omega</i> Makes a Global Impact. ACS Omega, 2019, 4, 11566-11568.	3.5	3
150	Glancing Back at a Successful 2018 and Looking Ahead to the New Year: Our Tribute to <i>ACS Omega's</i> Authors, Editors, and Reviewers. ACS Omega, 2019, 4, 1700-1702.	3.5	2
151	A conformation-specific IR spectroscopic signature for weak Cî€Oâ< Cî€O nâ†'ï€* interaction in capped 4 <i>R</i> hydroxyproline. Physical Chemistry Chemical Physics, 2019, 21, 4755-4762.	2.8	14
152	ACS Omega 2017: A Year-End Expression of Appreciation for the Fundamental Contributions of Our Reviewers. ACS Omega, 2018, 3, 595-607.	3.5	2
153	New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines. Nanoscale, 2018, 10, 3212-3224.	5.6	28
154	5-Amidodansyl-U (U ^D) Peptide Nucleic Acid (PNA) as a Fluorescent Sensor of the Local Dielectric Constant (Îμ) in PNA Duplexes: Major Grooves in PNA Duplexes Are More Hydrophobic Than Major Grooves in DNA–DNA Duplexes. Journal of Physical Chemistry C, 2018, 122, 14004-14013.	3.1	4
155	Modeling Glyco-Collagen Conjugates Using a Host–Guest Strategy To Alter Phenotypic Cell Migration and in Vivo Wound Healing. ACS Nano, 2017, 11, 11969-11977.	14.6	11
156	ACS Omega: The Inaugural Year in Perspective. ACS Omega, 2017, 2, 4030-4031.	3.5	2
157	Stereodependent and solventâ€specific formation of unusual βâ€structure through side chainâ€backbone Hâ€bonding in C4(<i>S</i>)â€(NH ₂ /OH/NHCHO)â€Lâ€prolyl polypeptides. Biopolymers, 2017, 108, e22981.	2.4	4
158	Fluorinated Peptide Nucleic Acids with Fluoroacetyl Side Chain Bearing 5-(F/CF3)-Uracil: Synthesis and Cell Uptake Studies. Journal of Organic Chemistry, 2016, 81, 6364-6373.	3.2	20
159	Chemistry, From Alpha to Omega, Open to All. ACS Omega, 2016, 1, 1-1.	3.5	6
160	A nanofiber assembly directed by the non-classical antiparallel \hat{l}^2 -structure from 4S-(OH) proline polypeptide. Chemical Communications, 2016, 52, 4884-4887.	4.1	12
161	Perfluoroalkylchain conjugation as a new tactic for enhancing cell permeability of peptide nucleic acids (PNAs) via reducing the nanoparticle size. Chemical Communications, 2016, 52, 521-524.	4.1	26
162	Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro ^X -Pro ^Y -Gly) ₆ Incorporating 4(<i>R</i> / <i>S</i>)-Aminoproline. Journal of Organic Chemistry, 2015, 80, 8552-8560.	3.2	16

#	Article	IF	CITATIONS
163	Influence of Pendant Chiral C ^{\hat{I}^3} -(Alkylideneamino/Guanidino) Cationic Side-chains of PNA Backbone on Hybridization with Complementary DNA/RNA and Cell Permeability. Journal of Organic Chemistry, 2014, 79, 9567-9577.	3.2	28
164	Clickable <i>C</i> ^{\hat{I}^3} -Azido(methylene/butylene) Peptide Nucleic Acids and Their Clicked Fluorescent Derivatives: Synthesis, DNA Hybridization Properties, and Cell Penetration Studies. Journal of Organic Chemistry, 2014, 79, 6708-6714.	3.2	12
165	Nucleic Acids – Chemistry and Applications. Journal of Organic Chemistry, 2013, 78, 12283-12287.	3.2	8
166	(α,α-dimethyl)glycyl (dmg) PNAs. Artificial DNA, PNA & XNA, 2012, 3, 5-13.	1.4	12
167	4(R/S)-Amino/Guanidino-substituted Proline Peptides: Design, Synthesis and DNA Transfection Properties. Chimia, 2012, 66, 936.	0.6	5
168	Aminomethylene Peptide Nucleic Acid (<i>am</i> -PNA): Synthesis, Regio-/Stereospecific DNA Binding, And Differential Cell Uptake of $(\hat{l}\pm\hat{l}^3, R/S)am-PNA Analogues. Journal of Organic Chemistry, 2012, 77, 5696-5704.$	3.2	52
169	4(R/S)-Guanidinylprolyl Collagen Peptides: On-Resin Synthesis, Complexation with Plasmid DNA, and the Role of Peptides in Enhancement of Transfection. Journal of Organic Chemistry, 2012, 77, 4131-4135.	3.2	15
170	Water-Induced Switching of \hat{l}^2 -Structure to Polyproline II Conformation in the 4 <i>S</i> Polypeptide via H-Bond Rearrangement. Organic Letters, 2010, 12, 5390-5393.	4.6	24
171	SbCl3 as a Highly Efficient Catalyst for the Acetylation of Alcohols, Phenols, and Amines under Solventâ€Free Conditions. Synthetic Communications, 2008, 38, 1518-1526.	2.1	8
172	Cyclohexanyl Peptide Nucleic Acids (chPNAs) for Preferential RNA Binding: Effective Tuning of Dihedral Angle β in PNAs for DNA/RNA Discrimination. Journal of Organic Chemistry, 2006, 71, 14-21.	3.2	29
173	BisPNA Targeting to DNA: Effect of Neutral Loop on DNA Duplex Strand Invasion byaepPNA-N7G/aepPNA-C Substituted Peptide Nucleic Acids. European Journal of Organic Chemistry, 2005, 2005, 5207-5215.	2.4	16
174	Conformationally Constrained PNA Analogues:  Structural Evolution toward DNA/RNA Binding Selectivity. Accounts of Chemical Research, 2005, 38, 404-412.	15.6	156
175	(SR/RS)-Cyclohexanyl PNAs:Â Conformationally Preorganized PNA Analogues with Unprecedented Preference for Duplex Formation with RNA. Journal of the American Chemical Society, 2005, 127, 4144-4145.	13.7	49
176	cis-Cyclopentyl PNA (cpPNA) as constrained chiral PNA analogues: stereochemical dependence of DNA/RNA hybridizationElectronic Supplementary Information (ESI) available: Experimental procedures for the synthesis of compounds, 1H, 13C NMR, mass spectral data, crystal structural data and melting curves for triplexes. See http://www.rsc.org/suppdata/cc/b3/b317000d/. Chemical Communications,	4.1	23
177	2004, , 860. (1S,2R/1R,2S)-cis-Cyclopentyl PNAs (cpPNAs) as Constrained PNA Analogues:Â Synthesis and Evaluation ofaeg-cpPNA Chimera and Stereopreferences in Hybridization with DNA/RNA. Journal of Organic Chemistry, 2004, 69, 5725-5734.	3.2	25
178	(1S,2R/1R,2S)-Aminocyclohexyl Glycyl Thymine PNA:  Synthesis, Monomer Crystal Structures, and DNA/RNA Hybridization Studies. Organic Letters, 2003, 5, 3013-3016.	4.6	45
179	Pyrrolidine Nucleic Acids:  DNA/PNA Oligomers with 2-Hydroxy/Aminomethyl- 4-(thymin-1-yl)pyrrolidine-N-acetic acid. Organic Letters, 2001, 3, 1269-1272.	4.6	38
180	DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Applied Physics Letters, 2001, 78, 2943-2945.	3.3	81

#	Article	IF	CITATIONS
181	Sequential entrapment of PNA and DNA in lipid bilayers stacks. Chemical Communications, 2001, , 2622-2623.	4.1	3
182	Pyrrolidyl Polyamines:  Branched, Chiral Polyamine Analogues That Stabilize DNA Duplexes and Triplexes. Organic Letters, 2001, 3, 103-106.	4.6	20
183	Enhanced Triple Helix Stability of Collagen Peptides with 4R-Aminoprolyl (Amp) Residues:  Relative Roles of Electrostatic and Hydrogen Bonding Effects. Journal of the American Chemical Society, 2001, 123, 2079-2080.	13.7	100
184	Aminoethylprolyl (aep) PNA:  Mixed Purine/Pyrimidine Oligomers and Binding Orientation Preferences for PNA:DNA Duplex Formation. Organic Letters, 2001, 3, 1281-1284.	4.6	49
185	Studies on the Formation of DNAâ^'Cationic Lipid Composite Films and DNA Hybridization in the Composites. Journal of Physical Chemistry B, 2001, 105, 4409-4414.	2.6	26
186	Peptide Nucleic Acids: Analogs and Derivatives. Current Organic Chemistry, 2000, 4, 931-943.	1.6	140
187	Cyanuryl-PNA Monomer:  Synthesis and Crystal Structure. Organic Letters, 2000, 2, 2825-2828.	4.6	32
188	Chiral analogues of peptide nucleic acids: Synthesis of 4-aminoprolyl nucleic acids and DNA complementation studies using UV/CD spectroscopy. Tetrahedron, 1999, 55, 177-192.	1.9	48
189	Aminoethylprolyl Peptide Nucleic Acids (aepPNA):  Chiral PNA Analogues That Form Highly Stable DNA:aepPNA2 Triplexes. Organic Letters, 1999, 1, 1513-1516.	4.6	68
190	Polarity Sensing by Fluorescent Oligonucleotides:  First Demonstration of Sequence-Dependent Microenvironmental Changes in the DNA Major Groove. Journal of Physical Chemistry B, 1999, 103, 7383-7385.	2.6	32
191	5-Amido-(carboxyfluorescein)-2′-dU-oligonucloetides: Novel Primers for Fluorescent Detection of PCR Amplified DNA. Nucleosides & Nucleotides, 1997, 16, 107-114.	0.5	8
192	Modulation of DNA Triplex Stability Through Nucleobase Modifications. Nucleosides & Nucleotides, 1997, 16, 1271-1278.	0.5	5
193	Conformationally Restrained Chiral Analogues of Spermine:  Chemical Synthesis and Improvements in DNA Triplex Stability. Journal of Organic Chemistry, 1997, 62, 5169-5173.	3.2	25
194	Fluorescent d(CGCGAATTCGCG): characterization of major groove polarity and study of minor groove interactions through a major groove semantophore conjugate. Nucleic Acids Research, 1995, 23, 159-164.	14.5	93
195	Effect of Stereochemistry and Hydrophobicity on the Selfâ€assembly of Pheâ€Pheâ€Nucleoside Conjugates. Macromolecular Chemistry and Physics, 0, , 2200011.	2.2	1