Xinlin Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphologyâ€Dependent Interactions of ZnO with Cu Nanoparticles at the Materials' Interface in Selective Hydrogenation of CO ₂ to CH ₃ OH. Angewandte Chemie - International Edition, 2011, 50, 2162-2165.	13.8	359
2	Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. Journal of Catalysis, 2016, 343, 157-167.	6.2	152
3	Advances in higher alcohol synthesis from CO2 hydrogenation. CheM, 2021, 7, 849-881.	11.7	129
4	Electronic Modulation of a Copper/Zinc Oxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2012, 51, 5832-5836.	13.8	126
5	Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. Journal of Catalysis, 2018, 359, 17-26.	6.2	125
6	Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Applied Catalysis B: Environmental, 2018, 234, 143-152.	20.2	122
7	Selective C ₂₊ Alcohol Synthesis from Direct CO ₂ Hydrogenation over a Cs-Promoted Cu-Fe-Zn Catalyst. ACS Catalysis, 2020, 10, 5250-5260.	11.2	108
8	Mechanistic Aspects of the Role of K Promotion on Cu–Fe-Based Catalysts for Higher Alcohol Synthesis from CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 14516-14526.	11.2	89
9	In Situ Generation of the Cu@3D-ZrO _{<i>x</i>} Framework Catalyst for Selective Methanol Synthesis from CO ₂ /H ₂ . ACS Catalysis, 2020, 10, 93-102.	11.2	84
10	Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover. Journal of Catalysis, 2021, 393, 207-214.	6.2	83
11	A promising low pressure methanol synthesis route from CO ₂ hydrogenation over Pd@Zn core–shell catalysts. Green Chemistry, 2017, 19, 270-280.	9.0	82
12	Plasmonâ€Assisted Photothermal Catalysis of Lowâ€Pressure CO ₂ Hydrogenation to Methanol over Pd/ZnO Catalyst. ChemCatChem, 2019, 11, 1598-1601.	3.7	58
13	Hydrazineâ€Assisted Liquid Exfoliation of MoS ₂ for Catalytic Hydrodeoxygenation of 4â€Methylphenol. Chemistry - A European Journal, 2016, 22, 2910-2914.	3.3	52
14	Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO ₂ hydrogenation to methanol. Journal of Materials Chemistry A, 2019, 7, 23878-23885.	10.3	50
15	Tandem Catalysis of Direct CO ₂ Hydrogenation to Higher Alcohols. ACS Catalysis, 2021, 11, 8978-8984.	11.2	42
16	Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2019, 9, 2673-2681.	4.1	38
17	A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chemical Communications, 2016, 52, 13901-13904. 	4.1	36
18	Surfaceâ€Atom Dependence of ZnOâ€Supported Ag@Pd Core@Shell Nanocatalysts in CO ₂ Hydrogenation to CH ₃ OH. ChemCatChem, 2017, 9, 924-928.	3.7	30

XINLIN HONG

#	Article	lF	CITATIONS
19	Spinel ZnFe ₂ O ₄ Regulates Copper Sites for CO ₂ Hydrogenation to Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 4033-4041.	6.7	30
20	Influence of surfactants on the parameters of polylactide nanocapsules containing insulin. Journal of Surfactants and Detergents, 2005, 8, 353-358.	2.1	27
21	Transparent superhydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance. RSC Advances, 2018, 8, 491-498.	3.6	26
22	Palladium on iron oxide nanoparticles: the morphological effect of the support in glycerol hydrogenolysis. Green Chemistry, 2013, 15, 2064.	9.0	25
23	Effect of hydrophilic chain length on the aqueous solution behavior of block amphiphilic copolymers PMMAâ€∢i>bâ€₽DMAEMA. Journal of Applied Polymer Science, 2012, 124, 202-208.	2.6	23
24	Atom transfer radical polymerization of methyl methacrylate in a novel ionic liquid and recycling of the catalyst. Journal of Applied Polymer Science, 2008, 108, 3683-3689.	2.6	18
25	Fabrication of PdZn alloy catalysts supported on ZnFe composite oxide for CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2021, 597, 260-268.	9.4	18
26	In Situ Formation of CoMoS Interfaces for Selective Hydrodeoxygenation of <i>p</i> -Cresol to Toluene. Industrial & Engineering Chemistry Research, 2020, 59, 15921-15928.	3.7	16
27	Probing the Size and Shape Effects of Cubic―and Sphericalâ€Shaped Palladium Nanoparticles in the Electrooxidation of Formic Acid. ChemCatChem, 2015, 7, 3826-3831.	3.7	15
28	Tailoring of Surface Acidic Sites in Co–MoS ₂ Catalysts for Hydrodeoxygenation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 5668-5674.	4.6	14
29	Thermoreversible organogels formed in a polyol system for the preparation of Sn nanoparticles encapsulated in carbon. Journal of Materials Chemistry, 2008, 18, 5445.	6.7	13
30	A novel alkoxysilane-modified high solids hydroxyl acrylic polyurethane: Preparation and surface properties. Journal of Applied Polymer Science, 2006, 101, 1866-1871.	2.6	11
31	Morphology effect of polythiophene catalysts on photo-degradation of methylene blue. RSC Advances, 2016, 6, 74968-74972.	3.6	10
32	Carboxyl groups as active sites for H2O2 decomposition in photodegradation over graphene oxide/polythiophene composites. Applied Surface Science, 2020, 524, 146397.	6.1	10
33	Sulfate-Promoted Higher Alcohol Synthesis from CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8980-8987.	6.7	10
34	Highly Efficient Metalâ€Free Visible Light Driven Photocatalyst: Graphene Oxide/Polythiophene Composite. ChemistrySelect, 2017, 2, 5578-5586.	1.5	9
35	Synthesis and Characterization of Mesoporous Manganese Oxides. Journal of Materials Synthesis and Processing, 2002, 10, 297-302.	0.3	8
36	Surface characterization of trimethoxysilane-containing high-solid hydroxyl acrylic resin films. E-Polymers, 2015, 15, 345-351.	3.0	7

XINLIN HONG

#	Article	IF	CITATIONS
37	Selective C ₂₊ alcohol synthesis by CO ₂ hydrogenation <i>via</i> a reaction-coupling strategy. Catalysis Science and Technology, 2022, 12, 1539-1550.	4.1	7
38	Photo and electronic excitation for low temperature catalysis over metal nanoparticles using an organic semiconductor. RSC Advances, 2014, 4, 47488-47496.	3.6	6
39	Pore size controlled synthesis of SiO2 colloidal crystal. Journal of Porous Materials, 2016, 23, 845-850.	2.6	6
40	PdPt@Au core@shell nanoparticles: Alloyed-core manipulation of CO electrocatalytic oxidation properties. Catalysis Communications, 2016, 83, 70-73.	3.3	5
41	BrÃ,nsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions. Catalysis Science and Technology, 2022, 12, 3426-3430.	4.1	5
42	A novel ligand for atom transfer radical polymerization. Polymer Bulletin, 2009, 62, 777-789.	3.3	4
43	A novel alkali and cosolvent thickening mechanism for latex. New Journal of Chemistry, 2015, 39, 8984-8992.	2.8	3
44	Pyrrolidin-2-one Structure Derivatives as Novel Ligands for Copper-based Atom Transfer Radical Polymerization (ATRP). Polymer Journal, 2008, 40, 428-435.	2.7	1
45	In situ formation of gold nanoparticles in alkylamine–polyol assemblies. New Journal of Chemistry, 2013, 37, 2969.	2.8	1
46	Direct electrochemical reduction of ethyl isonicotinate to 4-pyridinemethanol in an undivided flow reactor. Journal of Flow Chemistry, 0, , 1.	1.9	1
47	Graft polymers prepared by catalytic chain transfer polymerization (CCTP) and applied as solvent-borne dispersants for carbon black dispersions of high solid. E-Polymers, 2010, 10, .	3.0	0