Shin Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278162/publications.pdf

Version: 2024-02-01

516710 377865 1,600 39 16 34 citations h-index g-index papers 40 40 40 1826 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells. Journal of Virology, 2022, 96, jvi0221721.	3.4	3
2	Successful organoid-mediated generation of iPSC-derived CAR-T cells. Cell Stem Cell, 2022, 29, 493-495.	11.1	12
3	Improved antiâ€solid tumor response by humanized antiâ€podoplanin chimeric antigen receptor transduced human cytotoxic T cells in an animal model. Genes To Cells, 2022, 27, 549-558.	1.2	12
4	Induced pluripotent stem cell-derived natural killer cells gene-modified to express chimeric antigen receptor-targeting solid tumors. International Journal of Hematology, 2021, 114, 572-579.	1.6	8
5	A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nature Communications, 2021, 12, 430.	12.8	111
6	No Tumorigenicity of Allogeneic Induced Pluripotent Stem Cells in Major Histocompatibility Complex-matched Cynomolgus Macaques. Cell Transplantation, 2021, 30, 096368972199206.	2.5	4
7	Engineering of human induced pluripotent stem cells via human artificial chromosome vectors for cell therapy and disease modeling. Molecular Therapy - Nucleic Acids, 2021, 23, 629-639.	5.1	7
8	Generation of highly proliferative, rejuvenated cytotoxic TÂcell clones through pluripotency reprogramming for adoptive immunotherapy. Molecular Therapy, 2021, 29, 3027-3041.	8.2	19
9	Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nature Biomedical Engineering, 2021, 5, 429-440.	22.5	70
10	Improved safety of induced pluripotent stem cell-derived antigen-presenting cell-based cancer immunotherapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 171-179.	4.1	11
11	The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells. Communications Biology, 2021, 4, 694.	4.4	18
12	Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease. Molecular Therapy - Methods and Clinical Development, 2021, 21, 262-273.	4.1	5
13	Current status and future perspectives of HLA-edited induced pluripotent stem cells. Inflammation and Regeneration, 2020, 40, 23.	3.7	42
14	Generation of GM-CSF-producing antigen-presenting cells that induce a cytotoxic T cell-mediated antitumor response. Oncolmmunology, 2020, 9, 1814620.	4.6	13
15	Non–clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cellâ€derived anti–glypicanâ€3 chimeric antigen receptorâ€expressing natural killer/innate lymphoid cells. Cancer Science, 2020, 111, 1478-1490.	3.9	74
16	Differentiating CD8 $\hat{l}\pm\hat{l}^2$ T Cells from TCR-Transduced iPSCs for Cancer Immunotherapy. Methods in Molecular Biology, 2019, 2048, 81-84.	0.9	0
17	In Vitro Differentiation of T Cell: From CAR-Modified T-iPSC. Methods in Molecular Biology, 2019, 2048, 85-91.	0.9	8
18	Type I Interferon Delivery by iPSC-Derived Myeloid Cells Elicits Antitumor Immunity via XCR1+ Dendritic Cells. Cell Reports, 2019, 29, 162-175.e9.	6.4	26

#	Article	IF	CITATIONS
19	Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell, 2019, 24, 566-578.e7.	11.1	356
20	Toward the development of true "offâ€ŧheâ€shelf―synthetic Tâ€cell immunotherapy. Cancer Science, 2019, 110, 16-22.	3.9	29
21	In Vitro Differentiation of T Cells: From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2048, 59-70.	0.9	1
22	In Vitro Differentiation of T Cell: From Human iPS Cells in Feeder-Free Condition. Methods in Molecular Biology, 2019, 2048, 77-80.	0.9	2
23	In Vitro Detection of Cellular Adjuvant Properties of Human Invariant Natural Killer T Cells. Methods in Molecular Biology, 2019, 2048, 121-130.	0.9	0
24	In Vitro Differentiation of T Cells: From Nonhuman Primate-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2048, 93-106.	0.9	0
25	BCR–ABL-specific CD4+ T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells. Cellular and Molecular Immunology, 2018, 15, 15-26.	10.5	5
26	Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell, 2018, 23, 850-858.e4.	11.1	110
27	Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response. Stem Cell Reports, 2018, 10, 1935-1946.	4.8	21
28	Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells, 2018, 36, 1552-1566.	3.2	60
29	Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA. Molecular Therapy - Nucleic Acids, 2018, 12, 793-804.	5.1	13
30	Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated $\hat{\text{Vl}}\pm24$ Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 213-227.	4.8	66
31	In Vitro Generation of Antigen-Specific T Cells from Induced Pluripotent Stem Cells of Antigen-Specific T Cell Origin. Methods in Molecular Biology, 2016, 1393, 67-73.	0.9	16
32	Reprogramming away from the exhausted T cell state. Seminars in Immunology, 2016, 28, 35-44.	5.6	25
33	Rise of iPSCs as a cell source for adoptive immunotherapy. Human Cell, 2014, 27, 47-50.	2.7	6
34	Generation of Rejuvenated Antigen-Specific T Cells by Reprogramming to Pluripotency and Redifferentiation. Cell Stem Cell, 2013, 12, 114-126.	11.1	327
35	To Be Immunogenic, or Not to Be: That's the iPSC Question. Cell Stem Cell, 2013, 12, 385-386.	11.1	7 5
36	An in vivo assay for retrovirally transduced human peripheral T lymphocytes using nonobese diabetic/severe combined immunodeficiency mice. Experimental Hematology, 2005, 33, 35-41.	0.4	4

SHIN KANEKO

#	Article	IF	CITATIONS
37	Simplified Retroviral Vector GCsap with Murine Stem Cell Virus Long Terminal Repeat Allows High and Continued Expression of Enhanced Green Fluorescent Protein by Human Hematopoietic Progenitors Engrafted in Nonobese Diabetic/Severe Combined Immunodeficient Mice. Human Gene Therapy, 2001, 12, 35-44.	2.7	40
38	Gelatinous transformation of bone marrow with pancytopenia in an emaciated patient with systemic lupus erythematosus. Japanese Journal of Rheumatology, 1998, 8, 167-173.	0.0	0
39	Gelatinous transformation of bone marrow with pancytopenia in an emaciated patient with systemic lupus erythematosus. Japanese Journal of Rheumatology, 1998, 8, 167-173.	0.0	0