John Douglas Crawford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Saccades and presaccadic stimulus repetition alter cortical network topology and dynamics: evidence from EEG and graph theoretical analysis. Cerebral Cortex, 2023, 33, 2075-2100.	2.9	3
2	Spatiotemporal Coding in the Macaque Supplementary Eye Fields: Landmark Influence in the Target-to-Gaze Transformation. ENeuro, 2021, 8, ENEURO.0446-20.2020.	1.9	3
3	Spatiotemporal transformations for gaze control. Physiological Reports, 2020, 8, e14533.	1.7	17
4	Integration of Eye-Centered and Landmark-Centered Codes in Frontal Eye Field Gaze Responses. Cerebral Cortex, 2020, 30, 4995-5013.	2.9	11
5	Timing Determines Tuning: A Rapid Spatial Transformation in Superior Colliculus Neurons during Reactive Gaze Shifts. ENeuro, 2020, 7, ENEURO.0359-18.2019.	1.9	8
6	Cortical network hubs for perisaccadic visual processing: evidence from high resolution EEG and graph theory analysis. Journal of Vision, 2020, 20, 548.	0.3	0
7	Eye-head-hand coordination during visually guided reaches in head-unrestrained macaques. Journal of Neurophysiology, 2019, 122, 1946-1961.	1.8	8
8	Saccades vs. Novelty: the joint influence of saccades and repetition on perceived stimulus duration Journal of Vision, 2019, 19, 208a.	0.3	0
9	The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?. Frontiers in Neural Circuits, 2018, 12, 74.	2.8	18
10	Action relevance induces an attentional weighting of representations in visual working memory. Memory and Cognition, 2017, 45, 413-427.	1.6	22
11	Different Cortical Mechanisms for Spatial vs. Feature-Based Attentional Selection in Visual Working Memory. Frontiers in Human Neuroscience, 2016, 10, 415.	2.0	22
12	Trans-saccadic interactions in human parietal andÂoccipital cortex during the retention and comparison of object orientation. Cortex, 2016, 82, 263-276.	2.4	29
13	Cervical dystonia: a neural integrator disorder. Brain, 2016, 139, 2590-2599.	7.6	75
14	Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation. ENeuro, 2016, 3, ENEURO.0040-16.2016.	1.9	44
15	Spatial transformations between superior colliculus visual and motor response fields during headâ€unrestrained gaze shifts. European Journal of Neuroscience, 2015, 42, 2934-2951.	2.6	40
16	Hand placement near the visual stimulus improves orientation selectivity in V2 neurons. Journal of Neurophysiology, 2015, 113, 2859-2870.	1.8	22
17	Continuous Updating of Visuospatial Memory in Superior Colliculus during Slow Eye Movements. Current Biology, 2015, 25, 267-274.	3.9	56
18	Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey. Cerebral Cortex, 2015, 25, 3932-3952.	2.9	45

JOHN DOUGLAS CRAWFORD

#	Article	IF	CITATIONS
19	Decoupling the actions of the eyes from the hand alters beta and gamma synchrony within SPL. Journal of Neurophysiology, 2014, 111, 2210-2221.	1.8	21
20	Frames of reference for eye–head gaze shifts evoked during frontal eye field stimulation. European Journal of Neuroscience, 2013, 37, 1754-1765.	2.6	18
21	Neural Activity in Superior Parietal Cortex during Rule-based Visual-motor Transformations. Journal of Cognitive Neuroscience, 2013, 25, 436-454.	2.3	49
22	The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study. Frontiers in Behavioral Neuroscience, 2013, 7, 15.	2.0	17
23	Specialization of reach function in human posterior parietal cortex. Experimental Brain Research, 2012, 221, 1-18.	1.5	151
24	Three-Dimensional Transformations for Goal-Directed Action. Annual Review of Neuroscience, 2011, 34, 309-331.	10.7	152
25	Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach. Neuropsychologia, 2011, 49, 49-60.	1.6	48
26	Intrinsic Reference Frames of Superior Colliculus Visuomotor Receptive Fields during Head-Unrestrained Gaze Shifts. Journal of Neuroscience, 2011, 31, 18313-18326.	3.6	34
27	Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating. Vision Research, 2010, 50, 2661-2670.	1.4	34
28	Electrical Stimulation of the Frontal Eye Fields in the Head-Free Macaque Evokes Kinematically Normal 3D Gaze Shifts. Journal of Neurophysiology, 2010, 104, 3462-3475.	1.8	30
29	Influence of Saccade Efference Copy on the Spatiotemporal Properties of Remapping: A Neural Network Study. Journal of Neurophysiology, 2010, 103, 117-139.	1.8	25
30	Cue Reliability and a Landmark Stability Heuristic Determine Relative Weighting Between Egocentric and Allocentric Visual Information in Memory-Guided Reach. Journal of Neurophysiology, 2010, 103, 3054-3069.	1.8	75
31	Specificity of Human Parietal Saccade and Reach Regions during Transcranial Magnetic Stimulation. Journal of Neuroscience, 2010, 30, 13053-13065.	3.6	130
32	A method for mapping response fields and determining intrinsic reference frames of single-unit activity: Applied to 3D head-unrestrained gaze shifts. Journal of Neuroscience Methods, 2009, 180, 171-184.	2.5	23
33	Fields of Gain in the Brain. Neuron, 2009, 64, 598-600.	8.1	26
34	3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex. Neuroscience, 2009, 164, 1284-1302.	2.3	9
35	Saccade-related remapping of target representations between topographic maps: a neural network study. Journal of Computational Neuroscience, 2008, 24, 157-178.	1.0	21
36	Transcranial Magnetic Stimulation over Posterior Parietal Cortex Disrupts Transsaccadic Memory of Multiple Objects. Journal of Neuroscience, 2008, 28, 6938-6949.	3.6	65

#	Article	IF	CITATIONS
37	Neck Muscle Synergies During Stimulation and Inactivation of the Interstitial Nucleus of Cajal (INC). Journal of Neurophysiology, 2008, 100, 1677-1685.	1.8	18
38	Transcranial Magnetic Stimulation Over Human Dorsal–Lateral Posterior Parietal Cortex Disrupts Integration of Hand Position Signals Into the Reach Plan. Journal of Neurophysiology, 2008, 100, 2005-2014.	1.8	42
39	Three-Dimensional Eye–Head Coordination After Injection of Muscimol Into the Interstitial Nucleus of Cajal (INC). Journal of Neurophysiology, 2007, 97, 2322-2338.	1.8	45
40	Frames of Reference for Gaze Saccades Evoked During Stimulation of Lateral Intraparietal Cortex. Journal of Neurophysiology, 2007, 98, 696-709.	1.8	21
41	Interstitial Nucleus of Cajal Encodes Three-Dimensional Head Orientations in Fick-Like Coordinates. Journal of Neurophysiology, 2007, 97, 604-617.	1.8	32
42	Optimal inference explains dimension-specific contractions of spatial perception. Experimental Brain Research, 2007, 179, 313-323.	1.5	25
43	Visual memory capacity in transsaccadic integration. Experimental Brain Research, 2007, 180, 609-628.	1.5	63
44	Proprioceptive Guidance of Saccades in Eye–Hand Coordination. Journal of Neurophysiology, 2006, 96, 1464-1477.	1.8	44
45	Hemispheric Asymmetry in Memory-Guided Pointing During Single-Pulse Transcranial Magnetic Stimulation of Human Parietal Cortex. Journal of Neurophysiology, 2006, 96, 3016-3027.	1.8	34
46	Transsaccadic integration of visual features in a line intersection task. Experimental Brain Research, 2006, 169, 532-548.	1.5	57
47	Optic ataxia errors depend on remapped, not viewed, target location. Nature Neuroscience, 2005, 8, 418-420.	14.8	109
48	Distributed Population Mechanism for the 3-D Oculomotor Reference Frame Transformation. Journal of Neurophysiology, 2005, 93, 1742-1761.	1.8	50
49	Task-Specific Sensorimotor Adaptation to Reversing Prisms. Journal of Neurophysiology, 2005, 93, 1104-1110.	1.8	18
50	Integration of Target and Effector Information in Human Posterior Parietal Cortex for the Planning of Action. Journal of Neurophysiology, 2005, 93, 954-962.	1.8	173
51	Role of Superior Colliculus in Adaptive Eye–Head Coordination During Gaze Shifts. Journal of Neurophysiology, 2004, 92, 2168-2184.	1.8	22
52	Frames of Reference for Eye-Head Gaze Commands in Primate Supplementary Eye Fields. Neuron, 2004, 44, 1057-1066.	8.1	75
53	Neural Control of Three-Dimensional Eye and Head Posture. Annals of the New York Academy of Sciences, 2003, 1004, 122-131.	3.8	19
54	Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Experimental Brain Research, 2003, 152, 70-78.	1.5	56

#	Article	IF	CITATIONS
55	Neural control of three-dimensional eye and head movements. Current Opinion in Neurobiology, 2003, 13, 655-662.	4.2	77
56	Optimal transsaccadic integration explains distorted spatial perception. Nature, 2003, 422, 76-80.	27.8	397
57	Coordinating one hand with two eyes: optimizing for field of view in a pointing task. Vision Research, 2003, 43, 409-417.	1.4	23
58	Three-Dimensional Eye-Head Coordination Is Implemented Downstream From the Superior Colliculus. Journal of Neurophysiology, 2003, 89, 2839-2853.	1.8	68
59	Kinematic Rules for Upper and Lower Arm Contributions to Grasp Orientation. Journal of Neurophysiology, 2003, 90, 3816-3827.	1.8	39
60	Neural control of 3-D gaze shifts in the primate. Progress in Brain Research, 2003, 142, 109-124.	1.4	14
61	Static Ocular Counterroll Is Implemented Through the 3-D Neural Integrator. Journal of Neurophysiology, 2003, 90, 2777-2784.	1.8	27
62	Contribution of Head Movement to Gaze Command Coding in Monkey Frontal Cortex and Superior Colliculus. Journal of Neurophysiology, 2003, 90, 2770-2776.	1.8	31
63	Electrical Stimulation of the Supplementary Eye Fields in the Head-Free Macaque Evokes Kinematically Normal Gaze Shifts. Journal of Neurophysiology, 2003, 89, 2961-2974.	1.8	51
64	Midbrain Control of Three-Dimensional Head Orientation. Science, 2002, 295, 1314-1316.	12.6	90
65	Role of Eye, Head, and Shoulder Geometry in the Planning of Accurate Arm Movements. Journal of Neurophysiology, 2002, 87, 1677-1685.	1.8	72
66	Visuomotor transformations for eye-hand coordination. Progress in Brain Research, 2002, 140, 329-340.	1.4	26
67	Ocular dominance reverses as a function of horizontal gaze angle. Vision Research, 2001, 41, 1743-1748.	1.4	99
68	Self-organizing task modules and explicit coordinate systems in a neural network model for 3-D saccades. Journal of Computational Neuroscience, 2001, 10, 127-150.	1.0	18
69	The superior colliculus encodes gaze commands in retinal coordinates. Nature Neuroscience, 2001, 4, 627-632.	14.8	176
70	The motor side of depth vision. Nature, 2001, 410, 819-822.	27.8	89
71	Direction-dependent distortions of retinocentric space in the visuomotor transformation for pointing. Experimental Brain Research, 2000, 132, 179-194.	1.5	59
72	Modularity and parallel processing in the oculomotor integrator. Experimental Brain Research, 1993, 96, 443-56.	1.5	48

#	Article	IF	CITATIONS
73	Rotation of Listing's plane during vergence. Vision Research, 1992, 32, 2055-2064.	1.4	138
74	The conjugacy of human saccadic eye movements. Vision Research, 1992, 32, 1677-1684.	1.4	27