Marcello Maugeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276461/publications.pdf

Version: 2024-02-01

94 papers 3,338 citations

172457 29 h-index 53 g-index

94 all docs 94 docs citations 94 times ranked 5964 citing authors

#	Article	IF	CITATIONS
1	KEAP1 and TP53 Mutations in Lung Cancer: More Is Better. Reply to: "Survival Analysis of TP53 Co-Mutations Should Be Interpreted More Cautiously― Journal of Thoracic Oncology, 2022, 17, e40-e41.	1.1	1
2	KEAP1-Mutant NSCLC: The Catastrophic Failure of a Cell-Protecting Hub. Journal of Thoracic Oncology, 2022, 17, 751-757.	1.1	21
3	Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51. Cell Death and Differentiation, 2021, 28, 2060-2082.	11.2	19
4	Circulating HPV DNA in the Management of Oropharyngeal and Cervical Cancers: Current Knowledge and Future Perspectives. Journal of Clinical Medicine, 2021, 10, 1525.	2.4	16
5	The prognostic relevance of HER2-positivity gain in metastatic breast cancer in the ChangeHER trial. Scientific Reports, 2021, 11, 13770.	3.3	8
6	SCD1, autophagy and cancer: implications for therapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 265.	8.6	57
7	KEAP1 and TP53 Frame Genomic, Evolutionary, and Immunologic Subtypes of Lung Adenocarcinoma With Different Sensitivity to Immunotherapy. Journal of Thoracic Oncology, 2021, 16, 2065-2077.	1.1	28
8	PANHER study: a 20-year treatment outcome analysis from a multicentre observational study of HER2-positive advanced breast cancer patients from the real-world setting. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110598.	3.2	6
9	KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Annals of Oncology, 2020, 31, 1746-1754.	1.2	140
10	Efficacy of immunotherapy in lung cancer with co-occurring mutations in NOTCH and homologous repair genes., 2020, 8, e000946.		13
11	Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study. Journal of Experimental and Clinical Cancer Research, 2020, 39, 279.	8.6	32
12	KEAP1-NFE2L2 Mutations in NSCLC: Increased Awareness Needed. Reply to "KEAP1-NFE2L2–Mutant NSCLC and Immune Checkpoint Inhibitors: A Large Database Analysis― Journal of Thoracic Oncology, 2020, 15, e87-e88.	1.1	1
13	TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of colorectal cancer patients. Journal of Experimental and Clinical Cancer Research, 2020, 39, 111.	8.6	14
14	Multicohort and crossâ€platform validation of a prognostic Wnt signature in colorectal cancer. Clinical and Translational Medicine, 2020, 10, e199.	4.0	1
15	Mutations in the KEAP1-NFE2L2 Pathway Define a Molecular Subset of Rapidly Progressing Lung Adenocarcinoma. Journal of Thoracic Oncology, 2019, 14, 1924-1934.	1.1	60
16	Prognostic relevance of DNA damage and repair biomarkers in elderly patients with hormone-receptor-positive breast cancer treated with neoadjuvant hormone therapy: evidence from the real-world setting. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591985319.	3.2	2
17	A multicenter REtrospective observational study of first-line treatment with PERtuzumab, trastuzumab and taxanes for advanced HER2 positive breast cancer patients. RePer Study. Cancer Biology and Therapy, 2019, 20, 192-200.	3.4	30
18	The clinical significance of PD-L1 in advanced gastric cancer is dependent on <i>ARID1A </i> mutations and ATM expression. Oncolmmunology, 2018, 7, e1457602.	4.6	11

#	Article	IF	Citations
19	Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene, 2018, 37, 2367-2378.	5.9	101
20	Body mass index in HER2-negative metastatic breast cancer treated with first-line paclitaxel and bevacizumab. Cancer Biology and Therapy, 2018, 19, 328-334.	3.4	12
21	The Hippo pathway in normal development and cancer., 2018, 186, 60-72.		134
22	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut, 2018, 67, 903-917.	12.1	64
23	GLUT 1 receptor expression and circulating levels of fasting glucose in high grade serous ovarian cancer. Journal of Cellular Physiology, 2018, 233, 1396-1401.	4.1	17
24	Neoadjuvant chemotherapy in tripleâ€negative breast cancer: A multicentric retrospective observational study in realâ€life setting. Journal of Cellular Physiology, 2018, 233, 2313-2323.	4.1	33
25	Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 318.	8.6	66
26	Effect of Gender on the Outcome of Patients Receiving Immune Checkpoint Inhibitors for Advanced Cancer: A Systematic Review and Meta-Analysis of Phase III Randomized Clinical Trials. Journal of Clinical Medicine, 2018, 7, 542.	2.4	64
27	Coexisting YAP expression and TP53 missense mutations delineates a molecular scenario unexpectedly associated with better survival outcomes in advanced gastric cancer. Journal of Translational Medicine, 2018, 16, 247.	4.4	6
28	Observational study of coagulation activation in early breast cancer: development of a prognostic model based on data from the real world setting. Journal of Translational Medicine, 2018, 16, 129.	4.4	16
29	Deep sequencing and pathway-focused analysis revealed multigene oncodriver signatures predicting survival outcomes in advanced colorectal cancer. Oncogenesis, 2018, 7, 55.	4.9	12
30	Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy. Journal of Translational Medicine, 2018, 16, 22.	4.4	13
31	DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy. International Journal of Cancer, 2017, 140, 2587-2595.	5.1	30
32	Body mass index modifies the relationship between \hat{I}^3 -H2AX, a DNA damage biomarker, and pathological complete response in triple-negative breast cancer. BMC Cancer, 2017, 17, 101.	2.6	12
33	ESAS and FACT-B in eribulin-treated metastatic breast cancer patients: a multicenter, prospective and observational study. Future Oncology, 2017, 13, 1517-1525.	2.4	4
34	Expression of phosphorylated Hippo pathway kinases (MST1/2 and LATS1/2) in HER2-positive and triple-negative breast cancer patients treated with neoadjuvant therapy. Cancer Biology and Therapy, 2017, 18, 339-346.	3.4	22
35	Association between AXL, Hippo Transducers, and Survival Outcomes in Male Breast Cancer. Journal of Cellular Physiology, 2017, 232, 2246-2252.	4.1	9
36	Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: The EverExt study. Scientific Reports, 2017, 7, 10597.	3.3	16

#	Article	IF	Citations
37	Analysis of the ATR-Chk1 and ATM-Chk2 pathways in male breast cancer revealed the prognostic significance of ATR expression. Scientific Reports, 2017, 7, 8078.	3.3	14
38	A Realâ€World Multicentre Retrospective Study of Paclitaxelâ€Bevacizumab and Maintenance Therapy as Firstâ€Line for HER2â€Negative Metastatic Breast Cancer. Journal of Cellular Physiology, 2017, 232, 1571-1578.	4.1	16
39	A cut-off of 2150 cytokeratin 19 mRNA copy number in sentinel lymph node may be a powerful predictor of non-sentinel lymph node status in breast cancer patients. PLoS ONE, 2017, 12, e0171517.	2.5	12
40	Anthropometric, clinical and molecular determinants of treatment outcomes in postmenopausal, hormone receptor positive metastatic breast cancer patients treated with fulvestrant: Results from a real word setting. Oncotarget, 2017, 8, 69025-69037.	1.8	12
41	A retrospective multicentric observational study of trastuzumab emtansine in HER2 positive metastatic breast cancer: a real-world experience. Oncotarget, 2017, 8, 56921-56931.	1.8	53
42	Metabolic Determinants and Anthropometric Indicators Impact Clinical-pathological Features in Epithelial Ovarian Cancer Patients. Journal of Cancer, 2016, 7, 516-522.	2.5	4
43	Analysis of the hippo transducers TAZ and YAP in cervical cancer and its microenvironment. Oncolmmunology, 2016, 5, e1160187.	4.6	30
44	Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Review of Vaccines, 2016, 15, 1327-1336.	4.4	79
45	Neoadjuvant Sequential Docetaxel Followed by Highâ€Dose Epirubicin in Combination With Cyclophosphamide Administered Concurrently With Trastuzumab. The DECT Trial. Journal of Cellular Physiology, 2016, 231, 2541-2547.	4.1	12
46	Presurgical window of opportunity trial design as a platform for testing anticancer drugs: Pros, cons and a focus on breast cancer. Critical Reviews in Oncology/Hematology, 2016, 106, 132-142.	4.4	9
47	HMG-CoAR expression in male breast cancer: relationship with hormone receptors, Hippo transducers and survival outcomes. Scientific Reports, 2016, 6, 35121.	3.3	6
48	Body Mass Index and Treatment Outcomes in Metastatic Breast Cancer Patients Treated With Eribulin. Journal of Cellular Physiology, 2016, 231, 986-991.	4.1	12
49	Topographic expression of the Hippo transducers TAZ and YAP in triple-negative breast cancer treated with neoadjuvant chemotherapy. Journal of Experimental and Clinical Cancer Research, 2016, 35, 62.	8.6	24
50	Body mass index and treatment outcomes following neoadjuvant therapy in women aged 45Ây or younger: Evidence from a historic cohort. Cancer Biology and Therapy, 2016, 17, 470-476.	3.4	6
51	Hippo pathway and breast cancer stem cells. Critical Reviews in Oncology/Hematology, 2016, 99, 115-122.	4.4	48
52	DNA Damage and Repair Biomarkers in Cervical Cancer Patients Treated with Neoadjuvant Chemotherapy: An Exploratory Analysis. PLoS ONE, 2016, 11, e0149872.	2.5	11
53	"Triple positive―early breast cancer: an observational multicenter retrospective analysis of outcome. Oncotarget, 2016, 7, 17932-17944.	1.8	33
54	The Hippo transducers TAZ/YAP and their target CTGF in male breast cancer. Oncotarget, 2016, 7, 43188-43198.	1.8	35

#	Article	IF	CITATIONS
55	Abstract SY01-02: Targeting stem cell pathways in human cancer. , 2016, , .		O
56	The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Reviews in Molecular Medicine, 2015, 17, e14.	3.9	75
57	Impact of Body Mass Index (BMI) on outcome of metastatic breast cancer (MBC) patients (pts) treated with Eribulin in a real-world population: a multicenter retrospective study. Annals of Oncology, 2015, 26, vi13.	1.2	0
58	Role of gonadotropin-releasing hormone analogues in metastatic male breast cancer: results from a pooled analysis. Journal of Hematology and Oncology, 2015, 8, 53.	17.0	32
59	Triple positive breast cancer: A distinct subtype?. Cancer Treatment Reviews, 2015, 41, 69-76.	7.7	83
60	Anthropometric, Metabolic and Molecular Determinants of Human Epidermal Growth Factor Receptor 2 Expression in Luminal B Breast Cancer. Journal of Cellular Physiology, 2015, 230, 1708-1712.	4.1	5
61	Efficacy of chemotherapy in metastatic male breast cancer patients: a retrospective study. Journal of Experimental and Clinical Cancer Research, 2015, 34, 26.	8.6	15
62	Metformin and breast cancer: Basic knowledge in clinical context. Cancer Treatment Reviews, 2015, 41, 441-447.	7.7	13
63	Androgen receptor and antiandrogen therapy in male breast cancer. Cancer Letters, 2015, 368, 20-25.	7.2	17
64	TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene, 2015, 34, 681-690.	5.9	287
65	Predictive significance of DNA damage and repair biomarkers in triple-negative breast cancer patients treated with neoadjuvant chemotherapy: An exploratory analysis. Oncotarget, 2015, 6, 42773-42780.	1.8	14
66	Emerging Biological Treatments for Uterine Cervical Carcinoma. Journal of Cancer, 2014, 5, 86-97.	2.5	51
67	Cancer stem cells: are they responsible for treatment failure?. Future Oncology, 2014, 10, 2033-2044.	2.4	13
68	Outcomes of HER2-positive early breast cancer patients in the pre-trastuzumab and trastuzumab eras: a real-world multicenter observational analysis. The RETROHER study. Breast Cancer Research and Treatment, 2014, 147, 599-607.	2.5	39
69	Hot flushes in women with breast cancer: state of the art and future perspectives. Expert Review of Anticancer Therapy, 2014, 14, 185-198.	2.4	4
70	Docetaxel, oxaliplatin, and capecitabine combination chemotherapy for metastatic gastric cancer. Gastric Cancer, 2014, 17, 718-724.	5. 3	20
71	Antiandrogen therapy in metastatic male breast cancer: results from an updated analysis in an expanded case series. Breast Cancer Research and Treatment, 2014, 148, 73-80.	2.5	24
72	Aromatase inhibitors for metastatic male breast cancer: molecular, endocrine, and clinical considerations. Breast Cancer Research and Treatment, 2014, 147, 227-235.	2.5	19

#	Article	IF	CITATIONS
73	p53 status as effect modifier of the association between pre-treatment fasting glucose and breast cancer outcomes in non diabetic, HER2 positive patients treated with trastuzumab. Oncotarget, 2014, 5, 10382-10392.	1.8	11
74	The Hippo transducer TAZ as a biomarker of pathological complete response in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Oncotarget, 2014, 5, 9619-9625.	1.8	35
75	Approaching the Increasing Complexity of Non-small Cell Lung Cancer Taxonomy. Current Pharmaceutical Design, 2014, 20, 3973-3981.	1.9	2
76	Advances towards the design and development of personalized non-small-cell lung cancer drug therapy. Expert Opinion on Drug Discovery, 2013, 8, 1381-1397.	5.0	6
77	BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene, 2013, 32, 1843-1853.	5.9	94
78	FOLFIRI as a second-line therapy in patients with docetaxel-pretreated gastric cancer: a historical cohort. Journal of Experimental and Clinical Cancer Research, 2013, 32, 67.	8.6	22
79	Gemcitabine-oxaliplatin (GEMOX) as salvage treatment in pretreated epithelial ovarian cancer patients. Journal of Experimental and Clinical Cancer Research, 2013, 32, 49.	8.6	15
80	Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treatment Reviews, 2013, 39, 525-533.	7.7	50
81	Letrozole combined with gonadotropin-releasing hormone analog for metastatic male breast cancer. Breast Cancer Research and Treatment, 2013, 141, 119-123.	2.5	32
82	Biological and clinical implications of cancer stem cells in primary brain tumors. Frontiers in Oncology, 2013, 3, 6.	2.8	12
83	Vitamin D Supplementation and Breast Cancer Prevention: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. PLoS ONE, 2013, 8, e69269.	2.5	45
84	Functional Role of MicroRNAs in Prostate Cancer and Therapeutic Opportunities. Critical Reviews in Oncogenesis, 2013, 18, 303-316.	0.4	5
85	MicroRNAs and Prostate Cancer. Cancer Journal (Sudbury, Mass), 2012, 18, 253-261.	2.0	35
86	Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death and Differentiation, 2012, 19, 768-778.	11.2	157
87	Targeting Self-renewal Pathways in Cancer Stem Cells. , 2012, , 25-36.		0
88	DNA Damage Repair Pathways in Cancer Stem Cells. Molecular Cancer Therapeutics, 2012, 11, 1627-1636.	4.1	147
89	Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 2011, 30, 4231-4242.	5.9	221
90	Cancer Stem Cells and Chemosensitivity. Clinical Cancer Research, 2011, 17, 4942-4947.	7.0	181

#	Article	IF	CITATIONS
91	Therapeutic Targeting of Cancer Stem Cells. Frontiers in Oncology, 2011, 1, 10.	2.8	22
92	Translating basic research in cancer patient care. Annali Dell'Istituto Superiore Di Sanita, 2011, 47, 64-71.	0.4	4
93	Current knowledge and future directions on bisphosphonate-related osteonecrosis of the jaw in cancer patients. Expert Opinion on Pharmacotherapy, 2008, 9, 1351-1361.	1.8	16
94	Cross-Resistance Among Sequential Cancer Therapeutics: An Emerging Issue. Frontiers in Oncology, 0, 12, .	2.8	8