Kai Schulze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275720/publications.pdf Version: 2024-02-01

KAI SCHULZE

#	Article	IF	CITATIONS
1	Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis: In Vivo Evaluation in Mice. Vaccines, 2021, 9, 609.	4.4	4
2	Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. International Journal of Molecular Sciences, 2020, 21, 7654.	4.1	2
3	Role of Autophagy in Von Willebrand Factor Secretion by Endothelial Cells and in the In Vivo Thrombin-Antithrombin Complex Formation Promoted by the HIV-1 Matrix Protein p17. International Journal of Molecular Sciences, 2020, 21, 2022.	4.1	7
4	Mucosal Heterologous Prime/Boost Vaccination Induces Polyfunctional Systemic Immunity, Improving Protection Against Trypanosoma cruzi. Frontiers in Immunology, 2020, 11, 128.	4.8	22
5	Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs. Frontiers in Immunology, 2020, 11, 622385.	4.8	11
6	The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells. Vaccine, 2019, 37, 4963-4974.	3.8	30
7	Neutral Lipopolyplexes for InÂVivo Delivery of Conventional and Replicative RNA Vaccine. Molecular Therapy - Nucleic Acids, 2019, 17, 767-775.	5.1	38
8	The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Frontiers in Cellular and Infection Microbiology, 2019, 9, 31.	3.9	30
9	Functional and immunogenic characterization of diverse HCV glycoprotein E2 variants. Journal of Hepatology, 2019, 70, 593-602.	3.7	20
10	Self-Amplifying Replicon RNA Delivery to Dendritic Cells by Cationic Lipids. Molecular Therapy - Nucleic Acids, 2018, 12, 118-134.	5.1	30
11	Large-scale production of megakaryocytes in microcarrier-supported stirred suspension bioreactors. Scientific Reports, 2018, 8, 10146.	3.3	29
12	Rapid In Vivo Assessment of Adjuvant's Cytotoxic T Lymphocytes Generation Capabilities for Vaccine Development. Journal of Visualized Experiments, 2018, , .	0.3	3
13	Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. Npj Vaccines, 2017, 2, 9.	6.0	45
14	Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2169-2178.	3.3	25
15	Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. Journal of Controlled Release, 2017, 266, 256-271.	9.9	36
16	Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2463-2474.	3.3	19
17	Type I IFN and not TNF, is Essential for Cyclic Di-nucleotide-elicited CTL by a Cytosolic Cross-presentation Pathway. EBioMedicine, 2017, 22, 100-111.	6.1	26
18	Mucosal Administration of Cycle-Di-Nucleotide-Adjuvanted Virosomes Efficiently Induces Protection against Influenza H5N1 in Mice. Frontiers in Immunology, 2017, 8, 1223.	4.8	42

KAI SCHULZE

#	Article	IF	CITATIONS
19	Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2017, 11, e0005300.	3.0	31
20	Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 2016, 22, 274-285.	4.4	74
21	New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Current Topics in Microbiology and Immunology, 2016, 398, 207-234.	1.1	16
22	Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 711-722.	3.3	85
23	Modeling Influenza Virus Infection: A Roadmap for Influenza Research. Viruses, 2015, 7, 5274-5304.	3.3	125
24	Inverse micellar sugar glass (IMSC) nanoparticles for transfollicular vaccination. Journal of Controlled Release, 2015, 206, 140-152.	9.9	36
25	Rodents as pre-clinical models for predicting vaccine performance in humans. Expert Review of Vaccines, 2015, 14, 1213-1225.	4.4	9
26	Intranasal Delivery of Influenza rNP Adjuvanted with c-di-AMP Induces Strong Humoral and Cellular Immune Responses and Provides Protection against Virus Challenge. PLoS ONE, 2014, 9, e104824.	2.5	43
27	Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: Strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine, 2011, 29, 5210-5220.	3.8	110
28	The FAI protein of group C streptococci acts as a mucosal adjuvant by the specific targeting and activation of B cells. International Journal of Medical Microbiology, 2008, 298, 3-10.	3.6	1
29	The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine, 2007, 25, 1464-1469.	3.8	75