
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress toward a bicarbonate-based microalgae production system. Trends in Biotechnology, 2022, 40, 180-193.	9.3	37
2	Phytase blends for enhanced phosphorous mobilization of deoiled seeds. Enzyme and Microbial Technology, 2022, 153, 109953.	3.2	4
3	Recombination of Compatible Substitutions by 2GenReP and InSiReP. Methods in Molecular Biology, 2022, 2397, 71-81.	0.9	6
4	A plea for the integration of Green Toxicology in sustainable bioeconomy strategies – Biosurfactants and microgel-based pesticide release systems as examples. Journal of Hazardous Materials, 2022, 426, 127800.	12.4	5
5	Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Computational and Structural Biotechnology Journal, 2022, 20, 399-409.	4.1	7
6	Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules, 2022, 12, 153.	4.0	1
7	Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents. ChemSusChem, 2022, 15, .	6.8	17
8	Structure and Cooperativity in Substrate–Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chemical Biology, 2022, 17, 266-280.	3.4	8
9	In Silico and Experimental ADAM17 Kinetic Modeling as Basis for Future Screening System for Modulators. International Journal of Molecular Sciences, 2022, 23, 1368.	4.1	4
10	Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. ChemBioChem, 2022, , .	2.6	3
11	How Does Surface Charge Engineering of <i>Bacillus subtilis</i> Lipase A Improve Ionic Liquid Resistance? Lessons Learned from Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2689-2698.	6.7	15
12	Conditioning of Feed Material Prior to Feeding: Approaches for a Sustainable Phosphorus Utilization. Sustainability, 2022, 14, 3998.	3.2	5
13	Evolution of E. coli Phytase Toward Improved Hydrolysis of Inositol Tetraphosphate. Frontiers in Chemical Engineering, 2022, 4, .	2.7	5
14	High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from <scp>l</scp> -Phenylalanine via Linear and Divergent Enzymatic Cascades. Organic Process Research and Development, 2022, 26, 2085-2095.	2.7	15
15	BioAdhere: tailor-made bioadhesives for epiretinal visual prostheses. Biomaterials Science, 2022, 10, 3282-3295.	5.4	2
16	Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS Applied Materials & Interfaces, 2022, 14, 28412-28426.	8.0	4
17	Directed Evolution of a Cp*Rh ^{III} ‣inked Biohybrid Catalyst Based on a Screening Platform with Affinity Purification. ChemBioChem, 2021, 22, 679-685.	2.6	10
18	CompassR Yields Highly Organicâ€Solventâ€Tolerant Enzymes through Recombination of Compatible Substitutions. Chemistry - A European Journal, 2021, 27, 2789-2797.	3.3	28

#	Article	IF	CITATIONS
19	A Photoclickâ€Based Highâ€Throughput Screening for the Directed Evolution of Decarboxylase OleT. Chemistry - A European Journal, 2021, 27, 954-958.	3.3	7
20	Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science and Technology, 2021, 11, 4491-4499.	4.1	5
21	CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts. Green Chemistry, 2021, 23, 3474-3486.	9.0	26
22	Anchor peptides promote degradation of mixed plastics for recycling. Methods in Enzymology, 2021, 648, 271-292.	1.0	10
23	Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of Inorganic Biochemistry, 2021, 216, 111352.	3.5	8
24	Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angewandte Chemie - International Edition, 2021, 60, 11448-11456.	13.8	45
25	Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis, 2021, 11, 5079-5087.	11.2	21
26	PyPEF—An Integrated Framework for Data-Driven Protein Engineering. Journal of Chemical Information and Modeling, 2021, 61, 3463-3476.	5.4	20
27	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	5.5	33
28	Generation of phytase chimeras with low sequence identities and improved thermal stability. Journal of Biotechnology, 2021, 339, 14-21.	3.8	4
29	Expression and Refolding of the Plant Chitinase From Drosera capensis for Applications as a Sustainable and Integrated Pest Management. Frontiers in Bioengineering and Biotechnology, 2021, 9, 728501.	4.1	3
30	Enzyme mimetic microgel coating for endogenous nitric oxide mediated inhibition of platelet activation. Journal of Colloid and Interface Science, 2021, 601, 604-616.	9.4	14
31	Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-l²-glucanase. Computational and Structural Biotechnology Journal, 2021, 19, 743-751.	4.1	6
32	The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. Journal of Biological Chemistry, 2021, 296, 100662.	3.4	17
33	Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Computational and Structural Biotechnology Journal, 2021, 19, 4248-4264.	4.1	14
34	Protein Nanopore Membranes Prepared by a Simple Langmuir–Schaefer Approach. Small, 2021, 17, e2102975.	10.0	3
35	Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis, 2021, 4, 814-827.	34.4	38
36	Whole-cell screening of oxidative enzymes using genetically encoded sensors. Chemical Science, 2021, 12, 14766-14772.	7.4	6

#	Article	IF	CITATIONS
37	Matterâ€ <i>tag</i> : A universal immobilization platform for enzymes on polymers, metals, and siliconâ€based materials. Biotechnology and Bioengineering, 2020, 117, 49-61.	3.3	32
38	Computerâ€Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry - A European Journal, 2020, 26, 643-649.	3.3	57
39	Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for <i>Bacillus subtilis</i> Lipase A. Journal of Chemical Information and Modeling, 2020, 60, 1568-1584.	5.4	21
40	Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry - A European Journal, 2020, 26, 13537-13537.	3.3	3
41	Designed <i>Streptococcus pyogenes</i> Sortase A Accepts Branched Amines as Nucleophiles in Sortagging. Bioconjugate Chemistry, 2020, 31, 2476-2481.	3.6	13
42	MicroGelzymes: pH-Independent Immobilization of Cytochrome P450 BM3 in Microgels. Biomacromolecules, 2020, 21, 5128-5138.	5.4	25
43	Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catalysis, 2020, 10, 14847-14856.	11.2	53
44	KnowVolution of a GH5 Cellulase from <i>Penicillium verruculosum</i> to Improve Thermal Stability for Biomass Degradation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12388-12399.	6.7	29
45	FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis, 2020, 10, 10946-10953.	11.2	5
46	Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp ²)–H Bond Functionalization. Inorganic Chemistry, 2020, 59, 14457-14463.	4.0	12
47	Biocatalytic microgels (μ-Gel <i>zymes</i>): synthesis, concepts, and emerging applications. Green Chemistry, 2020, 22, 8183-8209.	9.0	23
48	Machine learning-assisted enzyme engineering. Methods in Enzymology, 2020, 643, 281-315.	1.0	59
49	A colourimetric high-throughput screening system for directed evolution of prodigiosin ligase PigC. Chemical Communications, 2020, 56, 8631-8634.	4.1	11
50	Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. Crystals, 2020, 10, 256.	2.2	14
51	Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails. International Journal of Molecular Sciences, 2020, 21, 1589.	4.1	68
52	Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry - A European Journal, 2020, 26, 13568-13572.	3.3	11
53	Phytase-Based Phosphorus Recovery Process for 20 Distinct Press Cakes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3913-3921.	6.7	24
54	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4974-4979.	3.3	11

#	Article	IF	CITATIONS
55	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4884-4884.	3.3	0
56	Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catalysis Science and Technology, 2020, 10, 2369-2377.	4.1	6
57	Preparativeâ€Scale Production of Testosterone Metabolites by Human Liver Cytochrome P450 Enzyme 3A4. Advanced Synthesis and Catalysis, 2020, 362, 2725-2738.	4.3	17
58	Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics. Journal of Physical Chemistry B, 2019, 123, 7372-7384.	2.6	3
59	Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles. International Journal of Molecular Sciences, 2019, 20, 3353.	4.1	14
60	In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS Applied Materials & Interfaces, 2019, 11, 29276-29289.	8.0	13
61	Oneâ€Pot Twoâ€Step Chemoenzymatic Cascade for the Synthesis of a Bisâ€benzofuran Derivative. European Journal of Organic Chemistry, 2019, 2019, 6341-6346.	2.4	17
62	Engineered phytases for emerging biotechnological applications beyond animal feeding. Applied Microbiology and Biotechnology, 2019, 103, 6435-6448.	3.6	24
63	Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Applied Materials & Interfaces, 2019, 11, 41091-41099.	8.0	26
64	A 96-multiplex capillary electrophoresis screening platform for product based evolution of P450 BM3. Scientific Reports, 2019, 9, 15479.	3.3	6
65	Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angewandte Chemie - International Edition, 2019, 58, 4562-4565.	13.8	57
66	Anchor Peptide-Mediated Surface Immobilization of a Grubbs-Hoveyda-Type Catalyst for Ring-Opening Metathesis Polymerization. Bioconjugate Chemistry, 2019, 30, 714-720.	3.6	16
67	How To Engineer Ionic Liquids Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 11293-11302.	6.7	38
68	A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochemical and Photobiological Sciences, 2019, 18, 1793-1805.	2.9	30
69	Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Applied Microbiology and Biotechnology, 2019, 103, 3761-3771.	3.6	7
70	Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability. International Journal of Molecular Sciences, 2019, 20, 1602.	4.1	45
71	Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catalysis Science and Technology, 2019, 9, 5572-5576.	4.1	26
72	Stimuli-Responsive Poly(<i>N</i> -Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules, 2019, 20, 992-1006.	5.4	25

#	Article	IF	CITATIONS
73	Directed Evolution Empowered Redesign of Natural Proteins for the Sustainable Production of Chemicals and Pharmaceuticals. Angewandte Chemie - International Edition, 2019, 58, 36-40.	13.8	169
74	High Throughput Screening Method for Engineering P450 Towards Terminal Hydroxylation of Fatty Acids. Journal of Biobased Materials and Bioenergy, 2019, 13, 79-85.	0.3	1
75	Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catalysis, 2018, 8, 3358-3364.	11.2	39
76	A Whole Cell <i>E. coli</i> Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein. ACS Catalysis, 2018, 8, 2611-2614.	11.2	71
77	Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution. ACS Combinatorial Science, 2018, 20, 203-211.	3.8	27
78	A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc. Biotechnology and Bioengineering, 2018, 115, 1106-1115.	3.3	12
79	Selecting of a cytochrome P450cam SeSaM library with 3-chloroindole and endosulfan – Identification of mutants that dehalogenate 3-chloroindole. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 68-79.	2.3	0
80	Olefin metathesis catalysts embedded in \hat{l}^2 -barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2861-2871.	2.2	16
81	Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate―in Stereorecognition of Diaryl Ketones. Journal of the American Chemical Society, 2018, 140, 12645-12654.	13.7	87
82	Enzyme–Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes. ACS Catalysis, 2018, 8, 10876-10887.	11.2	30
83	KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry - A European Journal, 2018, 24, 17117-17124.	3.3	18
84	A hydroquinone-specific screening system for directed P450 evolution. Applied Microbiology and Biotechnology, 2018, 102, 9657-9667.	3.6	16
85	KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding. Polymers, 2018, 10, 423.	4.5	47
86	Enzyme ompatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie, 2018, 130, 9546-9551.	2.0	1
87	Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium—Part 2. Polymers, 2018, 10, 524.	4.5	10
88	Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. Journal of Physical Chemistry B, 2018, 122, 7668-7681.	2.6	8
89	Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biology and Biotechnology, 2018, 5, 8.	5.1	12
90	Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH. Applied Microbiology and Biotechnology, 2018, 102, 9607-9620.	3.6	8

#	Article	IF	CITATIONS
91	Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry - A European Journal, 2018, 24, 16865-16872.	3.3	15
92	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie - International Edition, 2018, 57, 9402-9407.	13.8	18
93	Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations. Applied Microbiology and Biotechnology, 2017, 101, 3177-3187.	3.6	8
94	Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering. , 2017, , 145-172.		19
95	Cellulolytic RoboLector – towards an automated high-throughput screening platform for recombinant cellulase expression. Journal of Biological Engineering, 2017, 11, 1.	4.7	71
96	An Enzymatic Route to αâ€Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3. Chemistry - A European Journal, 2017, 23, 17981-17991.	3.3	28
97	Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from <i>E. coli</i> Outer Membrane as Template. ACS Sensors, 2017, 2, 1619-1626.	7.8	29
98	Recombinant RNA Polymerase from <i>Geobacillus</i> sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies. Biotechnology and Bioengineering, 2017, 114, 2739-2752.	3.3	7
99	2-Methyl-2,4-pentanediol (MPD) boosts as detergent-substitute the performance of Ãÿ-barrel hybrid catalyst for phenylacetylene polymerization. Beilstein Journal of Organic Chemistry, 2017, 13, 1498-1506.	2.2	12
100	Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. BioTechniques, 2016, 61, 305-314.	1.8	19
101	Artificial Diels–Alderase based on the transmembrane protein FhuA. Beilstein Journal of Organic Chemistry, 2016, 12, 1314-1321.	2.2	33
102	CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers, 2016, 8, 372.	4.5	20
103	Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials, 2016, 107, 115-123.	11.4	27
104	A whole cell biocatalyst for double oxidation of cyclooctane. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1641-1646.	3.0	16
105	Unraveling Binding Effects of Cobalt(II) Sepulchrate with the Monooxygenase P450 BM-3 Heme Domain Using Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2016, 12, 353-363.	5.3	6
106	Substrate thiophosphorylation by Arabidopsis mitogen-activated protein kinases. BMC Plant Biology, 2016, 16, 48.	3.6	14
107	Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Applied Microbiology and Biotechnology, 2016, 100, 227-242.	3.6	28
108	Investigation of Structural Determinants for the Substrate Specificity in the Zincâ€Dependent Alcohol Dehydrogenase CPCR2 from <i>Candida parapsilosis</i> . ChemBioChem, 2015, 16, 1512-1519.	2.6	13

#	Article	IF	CITATIONS
109	A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution. Applied Microbiology and Biotechnology, 2015, 99, 5237-5246.	3.6	18
110	A Competitive Flow Cytometry Screening System for Directed Evolution of Therapeutic Enzyme. ACS Synthetic Biology, 2015, 4, 768-775.	3.8	31
111	Water-Soluble Reactive Copolymers Based on Cyclic <i>N</i> -Vinylamides with Succinimide Side Groups for Bioconjugation with Proteins. Macromolecules, 2015, 48, 4256-4268.	4.8	31
112	Ionic liquid activated <i>Bacillus subtilis</i> lipase A variants through cooperative surface substitutions. Biotechnology and Bioengineering, 2015, 112, 1997-2004.	3.3	22
113	QM/MM Calculations Revealing the Resting and Catalytic States in Zinc-Dependent Medium-Chain Dehydrogenases/Reductases. ACS Catalysis, 2015, 5, 3207-3215.	11.2	39
114	Towards Understanding Directed Evolution: More than Half of All Amino Acid Positions Contribute to Ionic Liquid Resistance of <i>Bacillus subtilis</i> Lipase A. ChemBioChem, 2015, 16, 937-945.	2.6	45
115	Directed evolution 2.0: improving and deciphering enzyme properties. Chemical Communications, 2015, 51, 9760-9772.	4.1	122
116	A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein. ACS Catalysis, 2015, 5, 7519-7522.	11.2	68
117	Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment. Journal of Computer-Aided Molecular Design, 2015, 29, 1057-1069.	2.9	17
118	Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied Microbiology and Biotechnology, 2015, 99, 1237-1247.	3.6	29
119	Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnology and Bioengineering, 2014, 111, 2380-2389.	3.3	40
120	A High-Throughput Screening Method to Reengineer DNA Polymerases for Random Mutagenesis. Molecular Biotechnology, 2014, 56, 274-283.	2.4	9
121	Mediated electron transfer with monooxygenases—Insight in interactions between reduced mediators and the co-substrate oxygen. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 51-58.	1.8	23
122	Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Applied Microbiology and Biotechnology, 2014, 98, 5775-5785.	3.6	47
123	Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. Journal of Biotechnology, 2014, 170, 68-72.	3.8	43
124	Whole-cell double oxidation of n-heptane. Journal of Biotechnology, 2014, 191, 196-204.	3.8	26
125	P-LinK: A method for generating multicomponent cytochrome P450 fusions with variable linker length. BioTechniques, 2014, 57, 13-20.	1.8	20
126	Regioselective <i>o</i> â€Hydroxylation of Monosubstituted Benzenes by P450 BM3. Angewandte Chemie - International Edition, 2013, 52, 8459-8462.	13.8	77

#	Article	IF	CITATIONS
127	Surface charge engineering of a Bacillus gibsonii subtilisin protease. Applied Microbiology and Biotechnology, 2013, 97, 6793-6802.	3.6	39
128	Increasing activity and thermal resistance of <i>Bacillus gibsonii</i> alkaline protease (BgAP) by directed evolution. Biotechnology and Bioengineering, 2013, 110, 711-720.	3.3	72
129	Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics. Biosensors and Bioelectronics, 2013, 50, 84-90.	10.1	46
130	Conformational Dynamics of the FMN-Binding Reductase Domain of Monooxygenase P450BM-3. Journal of Chemical Theory and Computation, 2013, 9, 96-105.	5.3	12
131	Directed laccase evolution for improved ionic liquid resistance. Green Chemistry, 2013, 15, 1348.	9.0	64
132	<i>In Vitro</i> Double Oxidation of <i>n</i> â€Heptane with Direct Cofactor Regeneration. Advanced Synthesis and Catalysis, 2013, 355, 1787-1798.	4.3	38
133	To get what we aim for–Âprogress in diversity generation methods. FEBS Journal, 2013, 280, 2961-2978.	4.7	59
134	A roadmap to directed enzyme evolution and screening systems for biotechnological applications. Biological Research, 2013, 46, 395-405.	3.4	57
135	Exploring the mineralization of hydrophobins at a liquid interface. Soft Matter, 2012, 8, 11343.	2.7	12
136	COMPUTER-AIDED PROTEIN DIRECTED EVOLUTION: A REVIEW OF WEB SERVERS, DATABASES AND OTHER COMPUTATIONAL TOOLS FOR PROTEIN ENGINEERING. Computational and Structural Biotechnology Journal, 2012, 2, e201209008.	4.1	52
137	MAP ^{2.0} 3D: A Sequence/Structure Based Server for Protein Engineering. ACS Synthetic Biology, 2012, 1, 139-150.	3.8	19
138	Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chemistry, 2012, 14, 2719.	9.0	120
139	Phosphorothioate-based DNA recombination: an enzyme-free method for the combinatorial assembly of multiple DNA fragments. BioTechniques, 2012, 52, 1-6.	1.8	23
140	Directed Evolution of Subtilisin E into a Highly Active and Guanidinium Chloride―and Sodium Dodecylsulfateâ€Tolerant Protease. ChemBioChem, 2012, 13, 691-699.	2.6	21
141	Directed Evolution of P 450 BM 3 into a <i>p</i> â€Xylene Hydroxylase. ChemCatChem, 2012, 4, 771-77	733.7	40
142	Directed evolution of a highly active Yersinia mollaretii phytase. Applied Microbiology and Biotechnology, 2012, 95, 405-418.	3.6	64
143	OmniChange: The Sequence Independent Method for Simultaneous Site-Saturation of Five Codons. PLoS ONE, 2011, 6, e26222.	2.5	83
144	Directed Evolution of an Antitumor Drug (Arginine Deiminase PpADI) for Increased Activity at Physiological pH. ChemBioChem, 2010, 11, 691-697.	2.6	35

JING ZHAO

#	Article	IF	CITATIONS
145	Conformational dynamics of active site loop in <i>Escherichia coli</i> phytase. Biopolymers, 2010, 93, 994-1002.	2.4	15
146	Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Analytical Biochemistry, 2010, 406, 141-146.	2.4	109
147	Advances in generating functional diversity for directed protein evolution. Current Opinion in Chemical Biology, 2009, 13, 19-25.	6.1	156
148	Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chemistry, 2009, 11, 957.	9.0	113
149	Ionic liquid effects on the activity of monooxygenase P450 BM-3. Green Chemistry, 2008, 10, 117-123.	9.0	46
150	Directed Evolution of Oxygenases: Screening Systems, Success Stories and Challenges. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 197-217.	1.1	72
151	Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Engineering, Design and Selection, 2007, 21, 29-35.	2.1	68
152	Challenges of the genetic code for exploring sequence space in directed protein evolution. Biocatalysis and Biotransformation, 2007, 25, 229-241.	2.0	28
153	Are transversion mutations better? A Mutagenesis Assistant Program analysis on P450 BM-3 heme domain. Biotechnology Journal, 2007, 2, 133-142.	3.5	21
154	A Statistical Analysis of Random Mutagenesis Methods Used for Directed Protein Evolution. Journal of Molecular Biology, 2006, 355, 858-871.	4.2	132
155	A Screening System for the Directed Evolution of Epoxygenases: Importance of Position 184 in P450 BM3 for Stereoselective Styrene Epoxidation. Angewandte Chemie - International Edition, 2006, 45, 5380-5383.	13.8	59
156	Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnology and Bioengineering, 2004, 85, 351-358.	3.3	184
157	A Continuous Spectrophotometric Assay for P450 BM-3, a Fatty Acid Hydroxylating Enzyme, and Its Mutant F87A. Analytical Biochemistry, 1999, 269, 359-366.	2.4	143