Marianne Schimpl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274872/publications.pdf

Version: 2024-02-01

331670 454955 1,364 30 21 30 citations h-index g-index papers 31 31 31 1815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GlcNAcstatin:Â a Picomolar, SelectiveO-GlcNAcase Inhibitor That Modulates IntracellularO-GlcNAcylation Levels. Journal of the American Chemical Society, 2006, 128, 16484-16485.	13.7	136
2	O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology, 2012, 8, 969-974.	8.0	123
3	The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nature Structural and Molecular Biology, 2015, 22, 744-750.	8.2	114
4	GlcNAcstatins are nanomolar inhibitors of human <i>O</i> -GlcNAcase inducing cellular hyper- <i>O</i> -GlcNAcylation. Biochemical Journal, 2009, 420, 221-227.	3.7	83
5	Regulation of Caenorhabditis elegans p53/CEP-1–Dependent Germ Cell Apoptosis by Ras/MAPK Signaling. PLoS Genetics, 2011, 7, e1002238.	3.5	62
6	Mapping the binding sites of antibodies utilized in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies. Modern Pathology, 2020, 33, 518-530.	5.5	61
7	Human OGA binds substrates in a conserved peptide recognition groove. Biochemical Journal, 2010, 432, 1-12.	3.7	58
8	Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors. Biochemical Journal, 2014, 457, 497-502.	3.7	57
9	Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochemical Journal, 2012, 446, 149-157.	3.7	55
10	Cell-Penetrant, Nanomolar O-GlcNAcase Inhibitors Selective against Lysosomal Hexosaminidases. Chemistry and Biology, 2010, 17, 1250-1255.	6.0	52
11	O-GlcNAcase: Promiscuous Hexosaminidase or Key Regulator of O-GlcNAc Signaling?. Journal of Biological Chemistry, 2014, 289, 34433-34439.	3.4	50
12	Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}- <i>N</i> -methylpyridine-2-carboxami(AZD5305): A PARP1–DNA Trapper with High Selectivity for PARP1 over PARP2 and Other PARPs. Journal of Medicinal Chemistry, 2021, 64, 14498-14512.	de 6.4	50
13	Synergy of Peptide and Sugar in O-GlcNAcase Substrate Recognition. Chemistry and Biology, 2012, 19, 173-178.	6.0	48
14	The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5- <i>a</i>]pyridin-6-yl)amino]-9-(tetrahydro-2 <i>H</i> -pyran-4-yl)-7,9-dihy (AZD7648), a Potent and Selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 3461-3471.	dro-8 <i>H</i>	
15	Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. Journal of the American Chemical Society, 2020, 142, 10358-10372.	13.7	44
16	Discovery of $\langle i \rangle N < i \rangle - (4-\{[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1 < i > H < i > -1,2,3-triaz (AZD3229), a Potent Pan-KIT Mutant Inhibitor for the Treatment of Gastrointestinal Stromal Tumors. Journal of Medicinal Chemistry, 2018, 61, 8797-8810.$	ol-1-yl]ace 6.4	tamide
17	Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nature Communications, 2015, 6, 7807.	12.8	37
18	PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. International Journal of Molecular Sciences, 2021, 22, 5112.	4.1	35

#	Article	IF	CITATION
19	Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3. Journal of the American Chemical Society, 2016, 138, 10554-10560.	13.7	34
20	Dual functionality of O -GlcNAc transferase is required for Drosophila development. Open Biology, 2015, 5, 150234.	3.6	32
21	Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Research, 2021, 49, 2266-2288.	14.5	30
22	Fragment-Based Design of a Potent MAT2a Inhibitor and <i>in Vivo</i> Evaluation in an MTAP Null Xenograft Model. Journal of Medicinal Chemistry, 2021, 64, 6814-6826.	6.4	19
23	Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. Journal of Medicinal Chemistry, 2022, 65, 3306-3331.	6.4	19
24	A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. ACS Chemical Biology, 2017, 12, 1499-1503.	3.4	18
25	Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Open Biology, 2019, 9, 190192.	3.6	17
26	Optimization of an Imidazo[1,2- <i>a</i>) pyridine Series to Afford Highly Selective Type I1/2 Dual Mer/Axl Kinase Inhibitors with <i>In Vivo</i> Efficacy. Journal of Medicinal Chemistry, 2021, 64, 13524-13539.	6.4	13
27	Generating Selective Leads for Mer Kinase Inhibitorsâ€"Example of a Comprehensive Lead-Generation Strategy. Journal of Medicinal Chemistry, 2021, 64, 3165-3184.	6.4	11
28	A-loop interactions in Mer tyrosine kinase give rise to inhibitors with two-step mechanism and long residence time of binding. Biochemical Journal, 2020, 477, 4443-4452.	3.7	10
29	Structural and binding characterization of the LacdiNAc-specific adhesin (LabA; HopD) exodomain from Helicobacter pylori. Current Research in Structural Biology, 2021, 3, 19-29.	2.2	4
30	Optimization of hERG and Pharmacokinetic Properties for Basic Dihydro-8 <i>H</i> -purin-8-one Inhibitors of DNA-PK. ACS Medicinal Chemistry Letters, 2022, 13, 1295-1301.	2.8	0