
Pei-Cheng Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273968/publications.pdf Version: 2024-02-01

DELCHENC KIL

#	Article	IF	CITATIONS
1	Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation. Micromachines, 2022, 13, 382.	2.9	1
2	Optically Controlled Spin Gate Using GaN Quantum Dots. ACS Photonics, 2022, 9, 1529-1534.	6.6	5
3	Low-Profile Shear Force Tactile Sensor Based on Optical Methods. IEEE Electron Device Letters, 2022, 43, 1081-1084.	3.9	4
4	Ultracompact Optics-Free Chip-Scale Spectrometer with Integrated LEDs. , 2021, , .		0
5	Toward Artificial Fingertips Based on GaN Optical Tactile Sensors. , 2021, , .		0
6	Mapping tensorial shear stress with light-emitting GaN nanopillars. , 2021, , .		1
7	Two-photon controlled-phase gates enabled by photonic dimers. Physical Review A, 2021, 103, .	2.5	8
8	Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures. Micromachines, 2021, 12, 760.	2.9	5
9	Ultrathin Tactile Sensors with Directional Sensitivity and a High Spatial Resolution. Nano Letters, 2021, 21, 8304-8310.	9.1	10
10	Proposal for chip-scale generation and verification of photonic dimers. Applied Physics Letters, 2021, 119, 224001.	3.3	0
11	Wavelength tuning in the purple wavelengths using strain-controlled AlxGa1–xN/GaN disk-in-wire structures. Applied Physics Letters, 2020, 116, 041102.	3.3	6
12	On-chip optical spectrometer based on GaN wavelength-selective nanostructural absorbers. Applied Physics Letters, 2020, 116, 081103.	3.3	15
13	An Empirical Model for GaN Light Emitters with Dot-in-Wire Polar Nanostructures. Micromachines, 2020, 11, 82.	2.9	2
14	Variable transmission optical filter based on an actuated origami structure. Applied Optics, 2020, 59, 2963.	1.8	1
15	Toward scalable III-nitride quantum dot structures for quantum photonics. Semiconductors and Semimetals, 2020, , 1-27.	0.7	0
16	Design Chip-Scale Integration of Tunable Short-Wavelength Photonic Devices. , 2020, , .		0
17	(Invited) GaN Optoelectronic Devices Based on Local Strain Engineering. ECS Transactions, 2020, 98, 415-422.	0.5	0
18	(Invited) GaN Optoelectronic Devices Based on Local Strain Engineering. ECS Meeting Abstracts, 2020, MA2020-02, 1740-1740.	0.0	0

Pei-Cheng Ku

#	Article	IF	CITATIONS
19	A tensorial shear stress sensor based on light-emitting GaN nanopillars. Applied Physics Letters, 2019, 115, .	3.3	7
20	Mechanisms of inhomogeneous broadening in InGaN dot-in-wire structures. Journal of Applied Physics, 2019, 126, 083104.	2.5	6
21	Feasibility study of nanopillar LED array for color-tunable lighting and beyond. Optics Express, 2019, 27, 38229.	3.4	4
22	Transparent Displays Using Strain-Engineered Nanopillar Light-Emitting Diodes. , 2019, , .		0
23	Integrated parabolic nanolenses on MicroLED color pixels. Nanotechnology, 2018, 29, 165201.	2.6	7
24	Strain Effects in Gallium Nitride Adsorption on Defective and Doped Graphene: First-Principles Calculations. Crystals, 2018, 8, 58.	2.2	8
25	Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Scientific Reports, 2017, 7, 42962.	3.3	34
26	LED Lights With Hidden Intensity-Modulated Blue Channels Aiming for Enhanced Subconscious Visual Responses. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	3
27	Monolithic integration of individually addressable light-emitting diode color pixels. Applied Physics Letters, 2017, 110, 111103.	3.3	50
28	Impact of carrier localization on recombination in InGaN quantum wells and the efficiency of nitride light-emitting diodes: Insights from theory and numerical simulations. Applied Physics Letters, 2017, 111, .	3.3	62
29	Color mixing from monolithically integrated InGaN-based light-emitting diodes by local strain engineering. Applied Physics Letters, 2017, 111, .	3.3	34
30	III-Nitride Semiconductor Single Photon Sources. Series in Optics and Optoelectronics, 2017, , 661-669.	0.0	0
31	Strain-induced red-green-blue wavelength tuning in InGaN quantum wells. Applied Physics Letters, 2016, 108, 071104.	3.3	36
32	Site-controlled InGaN/GaN single-photon-emitting diode. Applied Physics Letters, 2016, 108, .	3.3	24
33	Charge-tunable indium gallium nitride quantum dots. Physical Review B, 2016, 93, .	3.2	11
34	Elliptical quantum dots as on-demand single photons sources with deterministic polarization states. Applied Physics Letters, 2015, 107, .	3.3	33
35	Plasmonic Enhancement of Single Photon Emission from a Site-Controlled Quantum Dot. ACS Photonics, 2015, 2, 1065-1070.	6.6	22
36	GaN Micromechanical Resonators with Meshed Metal Bottom Electrode. Materials, 2015, 8, 1204-1212.	2.9	5

Pei-Cheng Ku

#	Article	IF	CITATIONS
37	Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron, 2015, 88, 1136-1148.	8.1	372
38	Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots. Physical Review B, 2014, 90, .	3.2	23
39	How much better are InGaN/GaN nanodisks than quantum wells—Oscillator strength enhancement and changes in optical properties. Applied Physics Letters, 2014, 104, .	3.3	32
40	Single photon emission from site-controlled InGaN/GaN quantum dots. Applied Physics Letters, 2013, 103, .	3.3	44
41	Site-controlled single photon emitters based on InGaN/GaN quantum dots. , 2012, , .		Ο
42	Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing. Nanotechnology, 2012, 23, 455301.	2.6	6
43	The metal-clad semiconductor nanoring laser and its scaling properties. Optics Express, 2011, 19, 3218.	3.4	11
44	Subwavelength Surface Plasmon Optical Cavity—Scaling, Amplification, and Coherence. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1521-1528.	2.9	11
45	Slow Light Using P-Doped Semiconductor Heterostructures for High-Bandwidth Nonlinear Signal Processing. Journal of Lightwave Technology, 2008, 26, 3811-3817.	4.6	12
46	Slow-light optical buffers: capabilities and fundamental limitations. Journal of Lightwave Technology, 2005, 23, 4046-4066.	4.6	438
47	Slow light in semiconductor quantum wells. Optics Letters, 2004, 29, 2291.	3.3	291
48	Thermal oxidation of AlgaAs: modeling and process control. IEEE Journal of Quantum Electronics, 2003, 39, 577-585.	1.9	15
49	Buried selectively-oxidized AlGaAs structures grown on nonplanar substrates. Optics Express, 2002, 10, 1003.	3.4	10
50	Analysis of stability in two-mode laser systems. IEEE Journal of Quantum Electronics, 1996, 32, 1377-1382.	1.9	16