Faze Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273895/publications.pdf

Version: 2024-02-01

		109321		76900
77	6,454	35		74
papers	citations	h-index		g-index
			. '	
77	77	77		7142
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, 347, 1132-1135.	12.6	1,494
2	Self-cleaning coatings. Journal of Materials Chemistry, 2005, 15, 1689.	6.7	855
3	Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. Journal of Materials Chemistry A, 2013, 1, 5943.	10.3	306
4	Preparation and Characterisation of Superâ€Hydrophobic Surfaces. Chemistry - A European Journal, 2010, 16, 3568-3588.	3.3	267
5	Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19858-19865.	8.0	226
6	S, Nâ€Coâ€Doped Grapheneâ€Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Advanced Science, 2017, 4, 1600214.	11.2	204
7	Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Advanced Materials, 2012, 24, 3505-3508.	21.0	167
8	Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance. Journal of Materials Chemistry A, 2017, 5, 10622-10631.	10.3	164
9	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	14.9	160
10	Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. Journal of Materials Chemistry A, 2014, 2, 11628-11634.	10.3	153
11	A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes. Advanced Functional Materials, 2018, 28, 1705937.	14.9	138
12	Water droplet bouncingâ€"a definition for superhydrophobic surfaces. Chemical Communications, 2011, 47, 12059.	4.1	125
13	Creating robust superamphiphobic coatings for both hard and soft materials. Journal of Materials Chemistry A, 2015, 3, 20999-21008.	10.3	123
14	Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. ACS Nano, 2017, 11, 9259-9267.	14.6	118
15	Barrelâ€Shaped Oil Skimmer Designed for Collection of Oil from Spills. Advanced Materials Interfaces, 2015, 2, 1500350.	3.7	112
16	Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. Journal of Materials Chemistry A, 2018, 6, 17633-17641.	10.3	99
17	Atmospheric Pressure Plasma Functionalized Polymer Mesh: An Environmentally Friendly and Efficient Tool for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6828-6837.	6.7	91
18	Fabrication of robust superhydrophobic surfaces <i>via</i> aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures. Journal of Materials Chemistry A, 2019, 7, 17604-17612.	10.3	91

#	Article	IF	Citations
19	Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 42327-42335.	8.0	85
20	A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale, 2018, 10, 1920-1929.	5.6	81
21	Super-durable, non-fluorinated superhydrophobic free-standing items. Journal of Materials Chemistry A, 2018, 6, 357-362.	10.3	75
22	Underwater Spontaneous Pumpless Transportation of Nonpolar Organic Liquids on Extreme Wettability Patterns. ACS Applied Materials & Interfaces, 2016, 8, 2942-2949.	8.0	72
23	Robust platform for water harvesting and directional transport. Journal of Materials Chemistry A, 2018, 6, 5635-5643.	10.3	71
24	Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Journal of Colloid and Interface Science, 2016, 470, 221-228.	9.4	67
25	Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45345-45353.	8.0	56
26	Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 6271.	10.3	55
27	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52
28	Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition. RSC Advances, 2017, 7, 29275-29283.	3.6	52
29	A single step route to superhydrophobic surfaces through aerosol assisted deposition of rough polymer surfaces: duplicating the lotus effect. Journal of Materials Chemistry, 2009, 19, 1074-1076.	6.7	49
30	Transparent conducting n-type ZnO:Sc – synthesis, optoelectronic properties and theoretical insight. Journal of Materials Chemistry C, 2017, 5, 7585-7597.	5 . 5	46
31	Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7497-7503.	8.0	46
32	Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting. Journal of Materials Science, 2020, 55, 498-508.	3.7	46
33	Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry A, 2014, 2, 12177-12184.	10.3	45
34	Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes. Scientific Reports, 2019, 9, 7549.	3.3	41
35	Surface modification of tube inner wall by transferred atmospheric pressure plasma. Applied Surface Science, 2016, 389, 967-976.	6.1	37
36	Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. International Journal of Advanced Manufacturing Technology, 2016, 85, 673-681.	3.0	36

#	Article	lF	Citations
37	Characteristic and Application Study of Cold Atmospheric-Pressure Nitrogen Plasma Jet. IEEE Transactions on Plasma Science, 2015, 43, 1959-1968.	1.3	35
38	Hydrophilic patterning of superhydrophobic surfaces by atmosphericâ€pressure plasma jet. Micro and Nano Letters, 2015, 10, 105-108.	1.3	35
39	Programmable droplet transport on multi-bioinspired slippery surface with tridirectionally anisotropic wettability. Chemical Engineering Journal, 2022, 449, 137831.	12.7	35
40	Functionalized CFRP surface with water-repellence, self-cleaning and anti-icing properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124278.	4.7	29
41	Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition. International Journal of Machine Tools and Manufacture, 2020, 159, 103637.	13.4	29
42	Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic. RSC Advances, 2019, 9, 12547-12554.	3.6	28
43	Multifunctional Porous and Magnetic Silicone with High Elasticity, Durability, and Oil–Water Separation Properties. Langmuir, 2018, 34, 13305-13311.	3.5	25
44	A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Liâ€ion Batteries. Advanced Functional Materials, 2017, 27, 1604903.	14.9	22
45	Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro and Nano Letters, 2017, 12, 76-81.	1.3	19
46	Diamond wear properties in cold plasma jet. Diamond and Related Materials, 2014, 48, 96-103.	3.9	18
47	Magnet-assisted selective oil removal from water in non-open channel and continuous oil spills clean-up. Separation and Purification Technology, 2022, 282, 120119.	7.9	18
48	Synthesis and characterization of omniphobic surfaces with thermal, mechanical and chemical stability. RSC Advances, 2016, 6, 106491-106499.	3.6	17
49	Synthesis of superhydrophobic surfaces with Wenzel and Cassie–Baxter state: experimental evidence and theoretical insight. Nanotechnology, 2018, 29, 485601.	2.6	17
50	Patterning of water traps using close-loop hydrophilic micro grooves. Applied Surface Science, 2016, 389, 447-454.	6.1	16
51	Power-free water pump based on a superhydrophobic surface: generation of a mushroom-like jet and anti-gravity long-distance transport. Journal of Materials Chemistry A, 2016, 4, 13771-13777.	10.3	16
52	Adjusting the stability of plasma treated superhydrophobic surfaces by different modifications or microstructures. RSC Advances, 2016, 6, 79437-79447.	3.6	14
53	Preparation of superhydrophobic glass surface with high adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127861.	4.7	14
54	Plasma Hydrophilization of Superhydrophobic Surface and Its Aging Behavior: The Effect of Micro/nanostructured Surface. Surface and Interface Analysis, 2016, 48, 368-372.	1.8	13

#	Article	IF	CITATIONS
55	Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. Nanomaterials, 2018, 8, 205.	4.1	13
56	Fabrication of superamphiphobic surfaces with controllable oil adhesion in air. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125708.	4.7	13
57	Wettability-gradient surface fabricated by combining electrochemical etching and lithography. Journal of Dispersion Science and Technology, 2017, 38, 979-984.	2.4	12
58	Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas. Journal Physics D: Applied Physics, 2016, 49, 365202.	2.8	11
59	An environmentally-friendly method to fabricate extreme wettability patterns on metal substrates with good time stability. Applied Surface Science, 2019, 494, 880-885.	6.1	11
60	Improving surface wettability and adhesion property of polytetrafluoroethylene by atmospheric-pressure ammonia water-mixed plasma treatment. Vacuum, 2022, 196, 110763.	3 . 5	11
61	Veinâ€like directional transport platform of water on open aluminiuml substrate. Micro and Nano Letters, 2016, 11, 269-272.	1.3	10
62	Research on the cold plasma jet assisted cutting of Ti6Al4V. International Journal of Advanced Manufacturing Technology, 2015, 77, 2125-2133.	3.0	8
63	Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. Journal of Applied Physics, 2019, 125, .	2.5	8
64	Dodecyl Mercaptan Functionalized Copper Mesh for Water Repellence and Oil-water Separation. Journal of Bionic Engineering, 2021, 18, 887-899.	5.0	7
65	Reflective Silver Thin Film Electrodes from Commercial Silver(I) Triflate via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Nano Materials, 2018, 1, 3724-3732.	5 . O	6
66	Controllable wettability of laser treated aluminum mesh for on-demand oil/water separation. Journal of Dispersion Science and Technology, 2019, 40, 1627-1636.	2.4	6
67	Superhydrophobic micro-tube fabricated via one-step plasma polymerization for lossless droplet transfer. Surface and Coatings Technology, 2021, 421, 127272.	4.8	6
68	The investigation of droplet directional self-transport ability on the slippery liquid-infused surface with anisotropic structure. Progress in Organic Coatings, 2022, 168, 106857.	3.9	6
69	An environmentally friendly and cost-effective method to fabricate superhydrophobic PU sponge for oil/water separation. Journal of Dispersion Science and Technology, 2020, 41, 1136-1144.	2.4	5
70	Antiâ€corrosion property of superhydrophobic copper mesh with oneâ€step selfâ€assembled perfluorothiolate monolayers. Surface and Interface Analysis, 2022, 54, 1087-1097.	1.8	4
71	Tool Wear Properties of Diamond-Cutting Ferrous Metal. Advanced Materials Research, 0, 1027, 36-39.	0.3	3
72	Longâ€lasting oil wettability patterns fabrication on superoleophobic surfaces by atmospheric pressure DBD plasma jet. Micro and Nano Letters, 2017, 12, 1000-1005.	1.3	3

#	Article	IF	CITATION
73	Oneâ€step modification method to fabricate wettability patterns on aluminium substrate. Micro and Nano Letters, 2016, 11, 697-701.	1.3	2
74	Fabrication of extreme wettability patterns with water-film protection for organic liquids. Journal of Dispersion Science and Technology, 2017, 38, 566-569.	2.4	2
75	{Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes. Nanomaterials, 2017, 7, 33.	4.1	2
76	Friction and Wear Properties of S136/WC-Co Friction Pair in Cold Atmospheric Pressure Plasma Jet. Advanced Materials Research, 2014, 1027, 298-301.	0.3	0
77	Investigation on anti-friction performances of atmospheric flexible cold plasma jet., 2015,, 2297-2300.		O