Cecilia Stanghellini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimisation of supplemental light systems in Norwegian tomato greenhouses - A simulation study. Biosystems Engineering, 2022, 215, 129-142.	4.3	5
2	Bioeconomic evaluation of extended season and year-round tomato production in Norway using supplemental light. Agricultural Systems, 2022, 198, 103391.	6.1	5
3	Bio-economic evaluation of greenhouse designs for seasonal tomato production in Norway. Biosystems Engineering, 2021, 212, 413-430.	4.3	9
4	Irrigation management of European greenhouse vegetable crops. Agricultural Water Management, 2020, 242, 106393.	5.6	51
5	Smart greenhouse covers: a look into the future. Acta Horticulturae, 2020, , 213-224.	0.2	8
6	Plant factories: Reducing energy demand at high internal heat loads through façade design. Applied Energy, 2020, 262, 114544.	10.1	36
7	Materials with switchable radiometric properties: Could they become the perfect greenhouse cover?. Biosystems Engineering, 2020, 193, 157-173.	4.3	24
8	A greenhouse climate-yield model focussing on additional light, heat harvesting and its validation. Biosystems Engineering, 2020, 194, 1-15.	4.3	24
9	Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production. Frontiers in Plant Science, 2020, 11, 592171.	3.6	41
10	Practical implementation and evaluation of optimal carbon dioxide supply control. Acta Horticulturae, 2020, , 193-198.	0.2	0
11	Modelling Crop Transpiration in Greenhouses: Different Models for Different Applications. Agronomy, 2019, 9, 392.	3.0	44
12	Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Scientific Reports, 2019, 9, 14127.	3.3	113
13	Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in Plant Science, 2019, 10, 305.	3.6	154
14	The Plant Health Monitoring System of the EDEN ISS Space Greenhouse in Antarctica During the 2018 Experiment Phase. Frontiers in Plant Science, 2019, 10, 1457.	3.6	25
15	Growing fresh food on future space missions: Environmental conditions and crop management. Scientia Horticulturae, 2018, 235, 270-278.	3.6	33
16	The functional dependence of canopy conductance on water vapor pressure deficit revisited. International Journal of Biometeorology, 2018, 62, 1211-1220.	3.0	5
17	Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 2018, 160, 31-43.	6.1	247
18	Plant factories; crop transpiration and energy balance. Agricultural Systems, 2017, 153, 138-147.	6.1	90

#	Article	IF	CITATIONS
19	Productivity of a building-integrated roof top greenhouse in a Mediterranean climate. Agricultural Systems, 2017, 158, 14-22.	6.1	26
20	Technology for Rooftop Greenhouses. Urban Agriculture, 2017, , 83-101.	0.5	16
21	Ongoing developments in greenhouse climate control. Acta Horticulturae, 2017, , 1-14.	0.2	1
22	Improvement of greenhouse climate control in Mediterranean conditions: a case study from Turkey. Acta Horticulturae, 2017, , 889-896.	0.2	3
23	Numerical simulation of the effect of different mulches on the heat storage capacity of a Mediterranean greenhouse soil. Acta Horticulturae, 2017, , 119-128.	0.2	4
24	Heating and dehumidification in production greenhouses at northern latitudes: energy use. Acta Horticulturae, 2017, , 445-452.	0.2	11
25	Assessment of energy consumption in organic tomato greenhouse production – a case study. Acta Horticulturae, 2017, , 453-460.	0.2	5
26	Potential of different energy saving strategies in heated greenhouse. Acta Horticulturae, 2017, , 467-474.	0.2	6
27	Energy use for greenhouse heating in organic production in southern European countries. Acta Horticulturae, 2017, , 439-444.	0.2	1
28	Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 2016, 130, 162-173.	4.2	26
29	EFFECT OF LOW TEMPERATURE DURING THE NIGHT IN YOUNG SWEET PEPPER PLANTS: STRESS AND RECOVERY. Acta Horticulturae, 2015, , 115-121.	0.2	1
30	Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency. Agricultural Water Management, 2015, 156, 90-99.	5.6	40
31	Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils. Scientia Horticulturae, 2015, 189, 139-149.	3.6	23
32	ENERGY EFFICIENCY IN TOMATO GREENHOUSE PRODUCTION. A PRELIMINARY STUDY. Acta Horticulturae, 2014, , 179-185.	0.2	6
33	HORTICULTURAL PRODUCTION IN GREENHOUSES: EFFICIENT USE OF WATER. Acta Horticulturae, 2014, , 25-32.	0.2	45
34	IMPROVEMENTS IN THE LIFE CYCLE APPROACH AS AN ENVIRONMENTAL EVALUATION TOOL IN ORGANIC FARMING. Acta Horticulturae, 2014, , 287-290.	0.2	0
35	PROTECTED CULTIVATION IN EUROPE. Acta Horticulturae, 2013, , 11-27.	0.2	4
36	RESOURCE USE EFFICIENCY IN PROTECTED CULTIVATION: TOWARDS THE GREENHOUSE WITH ZERO EMISSIONS. Acta Horticulturae, 2012, , 91-100.	0.2	12

#	Article	IF	CITATIONS
37	AN ALGORITHM FOR OPTIMAL FERTILIZATION WITH PURE CARBON DIOXIDE IN GREENHOUSES. Acta Horticulturae, 2012, , 119-124.	0.2	3
38	MODEL-BASED DESIGN OF PROTECTED CULTIVATION SYSTEMS - FIRST RESULTS AND REMAINING CHALLENGES. Acta Horticulturae, 2012, , 255-266.	0.2	6
39	EFFECT OF DIFFUSE GLASS ON CLIMATE AND PLANT ENVIRONMENT: FIRST RESULTS FROM AN EXPERIMENT ON ROSES. Acta Horticulturae, 2012, , 255-262.	0.2	9
40	MODELING THE EFFECT OF THE POSITION OF COOLING ELEMENTS ON THE VERTICAL PROFILE OF TRANSPIRATION IN A GREENHOUSE TOMATO CROP. Acta Horticulturae, 2012, , 763-769.	0.2	3
41	ENVIRONMENTAL IMPACT ASSESSMENT OF DUTCH TOMATO CROP PRODUCTION IN A VENLO GLASSHOUSE. Acta Horticulturae, 2012, , 781-791.	0.2	21
42	LOCAL OPTIMIZATION OF THERMAL STORAGE FOR GREENHOUSES: REDUCTION OF ENERGY INPUT AND IMPROVEMENT OF INNER CLIMATE. Acta Horticulturae, 2012, , 131-138.	0.2	1
43	A methodology for model-based greenhouse design: Part 4, economic evaluation of different greenhouse designs: AÂSpanish case. Biosystems Engineering, 2012, 111, 336-349.	4.3	20
44	A methodology for model-based greenhouse design: Part 5, greenhouse design optimisation for southern-Spanish and Dutch conditions. Biosystems Engineering, 2012, 111, 350-368.	4.3	37
45	Environmental and economic assessment of protected crops in four European scenarios. Journal of Cleaner Production, 2012, 28, 45-55.	9.3	116
46	EFFECT OF CONDENSATION ON LIGHT TRANSMISSION AND ENERGY BUDGET OF SEVEN GREENHOUSE COVER MATERIALS. Acta Horticulturae, 2012, , 249-254.	0.2	7
47	A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 2011, 110, 363-377.	4.3	117
48	Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop. Biosystems Engineering, 2011, 110, 261-271.	4.3	33
49	A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosystems Engineering, 2011, 110, 378-395.	4.3	73
50	A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model. Biosystems Engineering, 2011, 110, 396-412.	4.3	31
51	HIGH TEMPERATURE CONTROL IN MEDITERRANEAN GREENHOUSE PRODUCTION: THE CONSTRAINTS AND THE OPTIONS. Acta Horticulturae, 2011, , 103-116.	0.2	5
52	CARBON DIOXIDE FERTILIZATION IN MEDITERRANEAN GREENHOUSES: WHEN AND HOW IS IT ECONOMICAL?. Acta Horticulturae, 2009, , 135-142.	0.2	10
53	FARM LEVEL OPTIMAL WATER MANAGEMENT: ASSISTANT FOR IRRIGATION UNDER DEFICIT (FLOW-AID). Acta Horticulturae, 2009, , 247-254.	0.2	6
54	THE EFFECT OF OUTDOOR CLIMATE CONDITIONS ON PASSIVE GREENHOUSE DESIGN. Acta Horticulturae, 2009, , 61-66.	0.2	5

#	Article	IF	CITATIONS
55	NEW DEVELOPMENTS IN GREENHOUSE TECHNOLOGY CAN MITIGATE THE WATER SHORTAGE PROBLEM OF THE 21ST CENTURY. Acta Horticulturae, 2008, , 45-52.	0.2	30
56	COVER MATERIALS EXCLUDING NEAR INFRARED RADIATION: EFFECT ON GREENHOUSE CLIMATE AND PLANT PROCESSES. Acta Horticulturae, 2008, , 477-482.	0.2	16
57	OPTIMAL GREENHOUSE DESIGN SHOULD TAKE INTO ACCOUNT OPTIMAL CLIMATE MANAGEMENT. Acta Horticulturae, 2008, , 97-104.	0.2	5
58	STEERING OF FOGGING: CONTROL OF HUMIDITY, TEMPERATURE OR TRANSPIRATION?. Acta Horticulturae, 2008, , 61-67.	0.2	9
59	EFFECTS OF ANTI-TRANSPIRANTS ON TRANSPIRATION AND ENERGY USE IN GREENHOUSE CULTIVATION. Acta Horticulturae, 2008, , 1365-1372.	0.2	1
60	CARBON DIOXIDE CONCENTRATION IN MEDITERRANEAN GREENHOUSES: HOW MUCH LOST PRODUCTION?. Acta Horticulturae, 2008, , 1541-1550.	0.2	21
61	THE COMBINED EFFECTS OF COVER DESIGN PARAMETERS ON TOMATO PRODUCTION OF A PASSIVE GREENHOUSE. Acta Horticulturae, 2008, , 383-392.	0.2	7
62	WHAT LIMITS THE APPLICATION OF WASTEWATER AND/OR CLOSED CYCLE IN HORTICULTURE?. Acta Horticulturae, 2007, , 323-330.	0.2	10
63	Effect of electrical conductivity, fruit pruning, and truss position on quality in greenhouse tomato fruit. Journal of Horticultural Science and Biotechnology, 2007, 82, 488-494.	1.9	30
64	THE PHOTOSYNTHESIS RESPONSE OF TOMATO TO AIR CIRCULATION. Acta Horticulturae, 2007, , 77-84.	0.2	7
65	THE ADAPTIVE GREENHOUSE - AN INTEGRATED SYSTEMS APPROACH TO DEVELOPING PROTECTED CULTIVATION SYSTEMS. Acta Horticulturae, 2006, , 399-406.	0.2	18
66	Simulation of Greenhouse Management in the Subtropics, Part I: Model Validation and Scenario Study for the Winter Season. Biosystems Engineering, 2005, 90, 307-318.	4.3	51
67	Simulation of Greenhouse Management in the Subtropics, Part II: Scenario Study for the Summer Season. Biosystems Engineering, 2005, 90, 433-441.	4.3	28
68	Plant water relations as affected by osmotic potential of the nutrient solution and potential transpiration in tomato (<i>Lycopersicon esculentum</i> Mill.). Journal of Horticultural Science and Biotechnology, 2004, 79, 211-218.	1.9	15
69	Response of tomato plants to a step-change in root-zone salinity under two different transpiration regimes. Scientia Horticulturae, 2002, 93, 267-279.	3.6	8
70	Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Scientia Horticulturae, 2001, 88, 11-29.	3.6	86
71	Analysis of the effect of EC and potential transpiration on vegetative growth of tomato. Scientia Horticulturae, 2001, 89, 9-21.	3.6	53
72	Cuticular cracking in bell pepper fruit: II. Effects of fruit water relations and fruit expansion. Journal of Horticultural Science and Biotechnology, 1999, 74, 1-5.	1.9	19

#	Article	IF	CITATIONS
73	Environmental factors affecting the cracking of greenhouse-grown bell pepper fruit. Journal of Horticultural Science and Biotechnology, 1999, 74, 6-12.	1.9	19
74	A model of humidity and its applications in a greenhouse. Agricultural and Forest Meteorology, 1995, 76, 129-148.	4.8	74
75	A comparison of soil- and canopy temperature-based methods for the early detection of water stress in a simulated patch of pasture. Irrigation Science, 1994, 14, 141-146.	2.8	15
76	Mixed convection above greenhouse crop canopies. Agricultural and Forest Meteorology, 1993, 66, 111-117.	4.8	22
77	Environmental control of greenhouse crop transpiration. Biosystems Engineering, 1992, 51, 297-311.	0.4	50