
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/827196/publications.pdf Version: 2024-02-01

<u>Ετήλη D \λ/μιτε</u>

#	Article	IF	CITATIONS
1	Data Carpentry for Biologists: A semester long Data Carpentry course using ecological and other biological examples. The Journal of Open Source Education, 2022, 5, 139.	0.4	2
2	portalcasting: Supporting automated forecasting of rodent populations. Journal of Open Source Software, 2022, 7, 3220.	4.6	0
3	Rdataretriever: R Interface to the Data Retriever. Journal of Open Source Software, 2021, 6, 2800.	4.6	2
4	A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network. ELife, 2021, 10, .	6.0	38
5	Estimating individualâ€level plant traits at scale. Ecological Applications, 2021, 31, e02300.	3.8	14
6	Evaluating probabilistic ecological forecasts. Ecology, 2021, 102, e03431.	3.2	10
7	A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network. PLoS Computational Biology, 2021, 17, e1009180.	3.2	19
8	RandCrowns: A Quantitative Metric for Imprecisely Labeled Tree Crown Delineation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11229-11239.	4.9	1
9	Automated dataâ€intensive forecasting of plant phenology throughout the United States. Ecological Applications, 2020, 30, e02025.	3.8	26
10	Matching the forecast horizon with the relevant spatial and temporal processes and data sources. Ecography, 2020, 43, 1729-1739.	4.5	23
11	DeepForest: A <scp>Python</scp> package for RGB deep learning tree crown delineation. Methods in Ecology and Evolution, 2020, 11, 1743-1751.	5.2	47
12	Ten Simple Rules for a successful remote postdoc. PLoS Computational Biology, 2020, 16, e1007809.	3.2	8
13	Cross-site learning in deep learning RGB tree crown detection. Ecological Informatics, 2020, 56, 101061.	5.2	82
14	A simulation study of the use of temporal occupancy for identifying core and transient species. PLoS ONE, 2020, 15, e0241198.	2.5	2
15	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
16	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
17	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
18	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0

#	Article	IF	CITATIONS
19	Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sensing, 2019, 11, 1309.	4.0	155
20	Developing a modern data workflow for regularly updated data. PLoS Biology, 2019, 17, e3000125.	5.6	31
21	Energetic equivalence underpins the size structure of tree and phytoplankton communities. Nature Communications, 2019, 10, 255.	12.8	19
22	Comparison of largeâ€scale citizen science data and longâ€ŧerm study data for phenology modeling. Ecology, 2019, 100, e02568.	3.2	33
23	Developing an automated iterative nearâ€ŧerm forecasting system for an ecological study. Methods in Ecology and Evolution, 2019, 10, 332-344.	5.2	54
24	A data science challenge for converting airborne remote sensing data into ecological information. PeerJ, 2019, 6, e5843.	2.0	24
25	portalr: an R package for summarizing and using the Portal Project Data. Journal of Open Source Software, 2019, 4, 1098.	4.6	5
26	Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1424-1432.	7.1	400
27	The prevalence and impact of transient species in ecological communities. Ecology, 2018, 99, 1825-1835.	3.2	51
28	No general relationship between mass and temperature in endothermic species. ELife, 2018, 7, .	6.0	49
29	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	5.8	289
30	Forecasting biodiversity in breeding birds using best practices. PeerJ, 2018, 6, e4278.	2.0	45
31	The proportion of core species in a community varies with spatial scale and environmental heterogeneity. PeerJ, 2018, 6, e6019.	2.0	10
32	Skills and Knowledge for Data-Intensive Environmental Research. BioScience, 2017, 67, 546-557.	4.9	68
33	Retriever: Data Retrieval Tool. Journal of Open Source Software, 2017, 2, 451.	4.6	9
34	An extensive comparison of species-abundance distribution models. PeerJ, 2016, 4, e2823.	2.0	71
35	Comparing processâ€based and constraintâ€based approaches for modeling macroecological patterns. Ecology, 2016, 97, 1228-1238.	3.2	17
36	Elevating The Status of Code in Ecology. Trends in Ecology and Evolution, 2016, 31, 4-7.	8.7	62

#	Article	IF	CITATIONS
37	Comparing process-based and constraint-based approaches for modeling macroecological patterns. Ecology, 2016, 97, 1228.	3.2	3
38	A Process-Independent Explanation for the General Form of Taylor's Law. American Naturalist, 2015, 186, E51-E60.	2.1	41
39	A Strong Test of the Maximum Entropy Theory of Ecology. American Naturalist, 2015, 185, E70-E80.	2.1	52
40	Exploring the spatially explicit predictions of the Maximum Entropy Theory of Ecology. Global Ecology and Biogeography, 2015, 24, 675-684.	5.8	13
41	Data Carpentry: Workshops to Increase Data Literacy for Researchers. International Journal of Digital Curation, 2015, 10, 135-143.	0.2	76
42	Best Practices for Scientific Computing. PLoS Biology, 2014, 12, e1001745.	5.6	427
43	How species richness and total abundance constrain the distribution of abundance. Ecology Letters, 2013, 16, 1177-1185.	6.4	54
44	Opposing Mechanisms Drive Richness Patterns of Core and Transient Bird Species. American Naturalist, 2013, 181, E83-E90.	2.1	49
45	The Case for Open Preprints in Biology. PLoS Biology, 2013, 11, e1001563.	5.6	60
46	Nine simple ways to make it easier to (re)use your data. Ideas in Ecology and Evolution, 2013, 6, .	0.1	57
47	The EcoData Retriever: Improving Access to Existing Ecological Data. PLoS ONE, 2013, 8, e65848.	2.5	26
48	An empirical evaluation of four variants of a universal species–area relationship. PeerJ, 2013, 1, e212.	2.0	12
49	An experimental test of the response of macroecological patterns to altered species interactions. Ecology, 2012, 93, 2505-2511.	3.2	31
50	Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology, 2012, 93, 1772-1778.	3.2	77
51	Species composition and abundance of mammalian communities. Ecology, 2011, 92, 2316-2316.	3.2	23
52	On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 2011, 92, 1887-1894.	3.2	253
53	Multimodality in the individual size distributions of bird communities. Global Ecology and Biogeography, 2011, 20, 145-153.	5.8	38
54	Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 2011, 20, 744-754.	5.8	195

#	Article	IF	CITATIONS
55	Simple Structural Differences between Coding and Noncoding DNA. PLoS ONE, 2011, 6, e14651.	2.5	5
56	Long-term insights into the influence of precipitation on community dynamics in desert rodents. Journal of Mammalogy, 2010, 91, 787-797.	1.3	65
57	Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3633-3643.	4.0	81
58	The Combined Influence of the Local Environment and Regional Enrichment on Bird Species Richness. American Naturalist, 2010, 175, E35-E43.	2.1	70
59	Measures of journal quality should separate reviews from original research. Ideas in Ecology and Evolution, 2010, , .	0.1	2
60	Changes in a tropical forest support metabolic zeroâ€sum dynamics. Ecology Letters, 2009, 12, 507-515.	6.4	27
61	Evaluating scaling models in biology using hierarchical Bayesian approaches. Ecology Letters, 2009, 12, 641-651.	6.4	60
62	Taking species abundance distributions beyond individuals. Ecology Letters, 2009, 12, 488-501.	6.4	80
63	On the relationship between mass and diameter distributions in tree communities. Ecology Letters, 2008, 11, 1287-1293.	6.4	13
64	ON ESTIMATING THE EXPONENT OF POWER-LAW FREQUENCY DISTRIBUTIONS. Ecology, 2008, 89, 905-912.	3.2	341
65	Zero Sum, the Niche, and Metacommunities: Longâ€Term Dynamics of Community Assembly. American Naturalist, 2008, 172, E257-E269.	2.1	101
66	Relationships between body size and abundance in ecology. Trends in Ecology and Evolution, 2007, 22, 323-330.	8.7	678
67	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995-1015.	6.4	1,124
68	Challenges in the application of geometric constraint models. Global Ecology and Biogeography, 2007, 16, 257-264.	5.8	25
69	Ecological correlates of geographical range occupancy in North American birds. Global Ecology and Biogeography, 2007, 16, 764-773.	5.8	54
70	INTRA-GUILD COMPENSATION REGULATES SPECIES RICHNESS IN DESERT RODENTS: REPLY. Ecology, 2006, 87, 2121-2125.	3.2	8
71	A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos, 2006, 112, 185-195.	2.7	170
72	INTRA-GUILD COMPENSATION REGULATES SPECIES RICHNESS IN DESERT RODENTS. Ecology, 2005, 86, 567-573.	3.2	33

#	Article	IF	CITATIONS
73	Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecology Letters, 2005, 8, 319-327.	6.4	212
74	The Template: Patterns and Processes of Spatial Variation. , 2005, , 31-47.		5
75	EVIDENCE FOR A GENERAL SPECIES–TIME–AREA RELATIONSHIP. Ecology, 2005, 86, 2032-2039.	3.2	135
76	Two-phase species-time relationships in North American land birds. Ecology Letters, 2004, 7, 329-336.	6.4	60
77	Was a â€~hyperdisease' responsible for the late Pleistocene megafaunal extinction?. Ecology Letters, 2004, 7, 859-868.	6.4	35
78	FACTORS AFFECTING BAT HOUSE OCCUPANCY IN COLORADO. Southwestern Naturalist, 2004, 49, 344-349.	0.1	14
79	Tradeâ€offs in Community Properties through Time in a Desert Rodent Community. American Naturalist, 2004, 164, 670-676.	2.1	60
80	TEMPORAL DYNAMICS IN THE STRUCTURE AND COMPOSITION OF A DESERT RODENT COMMUNITY. Ecology, 2004, 85, 2649-2655.	3.2	61
81	Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 2003, 6, 990-995.	6.4	215
82	Spatiotemporal scaling of species richness: patterns, processes, and implications. , 0, , 325-346.		22
83	Data Management Plan for Moore Investigator in Data Driven Discovery Grant. Research Ideas and Outcomes, 0, 2, e10708.	1.0	1
84	Some thoughts on best publishing practices for scientific software. Ideas in Ecology and Evolution, 0, 8, .	0.1	6
85	More individuals or specialized niches? Distinguishing support for hypotheses explaining positive species–energy relationships. Journal of Biogeography, 0, , .	3.0	0