Ethan P White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/827196/publications.pdf

Version: 2024-02-01

85 papers

7,019 citations

38 h-index 71685 76 g-index

119 all docs

119 docs citations

119 times ranked

11276 citing authors

#	Article	IF	CITATIONS
1	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995-1015.	6.4	1,124
2	Relationships between body size and abundance in ecology. Trends in Ecology and Evolution, 2007, 22, 323-330.	8.7	678
3	Best Practices for Scientific Computing. PLoS Biology, 2014, 12, e1001745.	5 . 6	427
4	Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1424-1432.	7.1	400
5	ON ESTIMATING THE EXPONENT OF POWER-LAW FREQUENCY DISTRIBUTIONS. Ecology, 2008, 89, 905-912.	3.2	341
6	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	5 . 8	289
7	On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 2011, 92, 1887-1894.	3.2	253
8	Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 2003, 6, 990-995.	6.4	215
9	Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecology Letters, 2005, 8, 319-327.	6.4	212
10	Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 2011, 20, 744-754.	5.8	195
11	A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos, 2006, 112, 185-195.	2.7	170
12	Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sensing, 2019, 11, 1309.	4.0	155
13	EVIDENCE FOR A GENERAL SPECIES–TIME–AREA RELATIONSHIP. Ecology, 2005, 86, 2032-2039.	3.2	135
14	Zero Sum, the Niche, and Metacommunities: Longâ€Term Dynamics of Community Assembly. American Naturalist, 2008, 172, E257-E269.	2.1	101
15	Cross-site learning in deep learning RGB tree crown detection. Ecological Informatics, 2020, 56, 101061.	5. 2	82
16	Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3633-3643.	4.0	81
17	Taking species abundance distributions beyond individuals. Ecology Letters, 2009, 12, 488-501.	6.4	80
18	Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology, 2012, 93, 1772-1778.	3.2	77

#	Article	IF	Citations
19	Data Carpentry: Workshops to Increase Data Literacy for Researchers. International Journal of Digital Curation, 2015, 10, 135-143.	0.2	76
20	An extensive comparison of species-abundance distribution models. PeerJ, 2016, 4, e2823.	2.0	71
21	The Combined Influence of the Local Environment and Regional Enrichment on Bird Species Richness. American Naturalist, 2010, 175, E35-E43.	2.1	70
22	Skills and Knowledge for Data-Intensive Environmental Research. BioScience, 2017, 67, 546-557.	4.9	68
23	Long-term insights into the influence of precipitation on community dynamics in desert rodents. Journal of Mammalogy, 2010, 91, 787-797.	1.3	65
24	Elevating The Status of Code in Ecology. Trends in Ecology and Evolution, 2016, 31, 4-7.	8.7	62
25	TEMPORAL DYNAMICS IN THE STRUCTURE AND COMPOSITION OF A DESERT RODENT COMMUNITY. Ecology, 2004, 85, 2649-2655.	3.2	61
26	Two-phase species-time relationships in North American land birds. Ecology Letters, 2004, 7, 329-336.	6.4	60
27	Tradeâ€offs in Community Properties through Time in a Desert Rodent Community. American Naturalist, 2004, 164, 670-676.	2.1	60
28	Evaluating scaling models in biology using hierarchical Bayesian approaches. Ecology Letters, 2009, 12, 641-651.	6.4	60
29	The Case for Open Preprints in Biology. PLoS Biology, 2013, 11, e1001563.	5.6	60
30	Nine simple ways to make it easier to (re)use your data. Ideas in Ecology and Evolution, 2013, 6, .	0.1	57
31	Ecological correlates of geographical range occupancy in North American birds. Global Ecology and Biogeography, 2007, 16, 764-773.	5.8	54
32	How species richness and total abundance constrain the distribution of abundance. Ecology Letters, 2013, 16, 1177-1185.	6.4	54
33	Developing an automated iterative nearâ€ŧerm forecasting system for an ecological study. Methods in Ecology and Evolution, 2019, 10, 332-344.	5.2	54
34	A Strong Test of the Maximum Entropy Theory of Ecology. American Naturalist, 2015, 185, E70-E80.	2.1	52
35	The prevalence and impact of transient species in ecological communities. Ecology, 2018, 99, 1825-1835.	3.2	51
36	Opposing Mechanisms Drive Richness Patterns of Core and Transient Bird Species. American Naturalist, 2013, 181, E83-E90.	2.1	49

#	Article	IF	Citations
37	No general relationship between mass and temperature in endothermic species. ELife, 2018, 7, .	6.0	49
38	DeepForest: A <scp>Python</scp> package for RGB deep learning tree crown delineation. Methods in Ecology and Evolution, 2020, 11, 1743-1751.	5. 2	47
39	Forecasting biodiversity in breeding birds using best practices. PeerJ, 2018, 6, e4278.	2.0	45
40	A Process-Independent Explanation for the General Form of Taylor's Law. American Naturalist, 2015, 186, E51-E60.	2.1	41
41	Multimodality in the individual size distributions of bird communities. Global Ecology and Biogeography, 2011, 20, 145-153.	5.8	38
42	A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network. ELife, $2021,10,.$	6.0	38
43	Was a â€~hyperdisease' responsible for the late Pleistocene megafaunal extinction?. Ecology Letters, 2004, 7, 859-868.	6.4	35
44	INTRA-GUILD COMPENSATION REGULATES SPECIES RICHNESS IN DESERT RODENTS. Ecology, 2005, 86, 567-573.	3.2	33
45	Comparison of largeâ€scale citizen science data and longâ€term study data for phenology modeling. Ecology, 2019, 100, e02568.	3.2	33
46	An experimental test of the response of macroecological patterns to altered species interactions. Ecology, 2012, 93, 2505-2511.	3.2	31
47	Developing a modern data workflow for regularly updated data. PLoS Biology, 2019, 17, e3000125.	5.6	31
48	Changes in a tropical forest support metabolic zeroâ€sum dynamics. Ecology Letters, 2009, 12, 507-515.	6.4	27
49	Automated dataâ€intensive forecasting of plant phenology throughout the United States. Ecological Applications, 2020, 30, e02025.	3.8	26
50	The EcoData Retriever: Improving Access to Existing Ecological Data. PLoS ONE, 2013, 8, e65848.	2.5	26
51	Challenges in the application of geometric constraint models. Global Ecology and Biogeography, 2007, 16, 257-264.	5 . 8	25
52	A data science challenge for converting airborne remote sensing data into ecological information. PeerJ, 2019, 6, e5843.	2.0	24
53	Species composition and abundance of mammalian communities. Ecology, 2011, 92, 2316-2316.	3. 2	23
54	Matching the forecast horizon with the relevant spatial and temporal processes and data sources. Ecography, 2020, 43, 1729-1739.	4.5	23

#	Article	IF	Citations
55	Spatiotemporal scaling of species richness: patterns, processes, and implications. , 0, , 325-346.		22
56	Energetic equivalence underpins the size structure of tree and phytoplankton communities. Nature Communications, 2019, 10, 255.	12.8	19
57	A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network. PLoS Computational Biology, 2021, 17, e1009180.	3.2	19
58	Comparing processâ€based and constraintâ€based approaches for modeling macroecological patterns. Ecology, 2016, 97, 1228-1238.	3.2	17
59	FACTORS AFFECTING BAT HOUSE OCCUPANCY IN COLORADO. Southwestern Naturalist, 2004, 49, 344-349.	0.1	14
60	Estimating individualâ€level plant traits at scale. Ecological Applications, 2021, 31, e02300.	3.8	14
61	On the relationship between mass and diameter distributions in tree communities. Ecology Letters, 2008, 11, 1287-1293.	6.4	13
62	Exploring the spatially explicit predictions of the Maximum Entropy Theory of Ecology. Global Ecology and Biogeography, 2015, 24, 675-684.	5.8	13
63	An empirical evaluation of four variants of a universal species–area relationship. PeerJ, 2013, 1, e212.	2.0	12
64	Evaluating probabilistic ecological forecasts. Ecology, 2021, 102, e03431.	3.2	10
65	The proportion of core species in a community varies with spatial scale and environmental heterogeneity. PeerJ, 2018, 6, e6019.	2.0	10
66	Retriever: Data Retrieval Tool. Journal of Open Source Software, 2017, 2, 451.	4.6	9
67	INTRA-GUILD COMPENSATION REGULATES SPECIES RICHNESS IN DESERT RODENTS: REPLY. Ecology, 2006, 87, 2121-2125.	3.2	8
68	Ten Simple Rules for a successful remote postdoc. PLoS Computational Biology, 2020, 16, e1007809.	3.2	8
69	Some thoughts on best publishing practices for scientific software. Ideas in Ecology and Evolution, 0, 8, .	0.1	6
70	The Template: Patterns and Processes of Spatial Variation. , 2005, , 31-47.		5
71	Simple Structural Differences between Coding and Noncoding DNA. PLoS ONE, 2011, 6, e14651.	2.5	5
72	portalr: an R package for summarizing and using the Portal Project Data. Journal of Open Source Software, 2019, 4, 1098.	4.6	5

#	Article	IF	CITATIONS
73	Comparing process-based and constraint-based approaches for modeling macroecological patterns. Ecology, 2016, 97, 1228.	3.2	3
74	Rdataretriever: R Interface to the Data Retriever. Journal of Open Source Software, 2021, 6, 2800.	4.6	2
75	A simulation study of the use of temporal occupancy for identifying core and transient species. PLoS ONE, 2020, 15, e0241198.	2.5	2
76	Measures of journal quality should separate reviews from original research. Ideas in Ecology and Evolution, 2010, , .	0.1	2
77	Data Carpentry for Biologists: A semester long Data Carpentry course using ecological and other biological examples. The Journal of Open Source Education, 2022, 5, 139.	0.4	2
78	Data Management Plan for Moore Investigator in Data Driven Discovery Grant. Research Ideas and Outcomes, 0, 2, e10708.	1.0	1
79	RandCrowns: A Quantitative Metric for Imprecisely Labeled Tree Crown Delineation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11229-11239.	4.9	1
80	portalcasting: Supporting automated forecasting of rodent populations. Journal of Open Source Software, 2022, 7, 3220.	4.6	0
81	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
82	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
83	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
84	A simulation study of the use of temporal occupancy for identifying core and transient species. , 2020, 15, e0241198.		0
85	More individuals or specialized niches? Distinguishing support for hypotheses explaining positive species–energy relationships. Journal of Biogeography, 0, , .	3.0	O