Abelardo Margolles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8271857/publications.pdf

Version: 2024-02-01

217 papers

18,192 citations

66 h-index

14644

126 g-index

220 all docs 220 docs citations

times ranked

220

17568 citing authors

#	Article	IF	CITATIONS
1	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	1.5	1,443
2	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	1,118
3	Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 2017, 61, 1600240.	1.5	678
4	Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE, 2012, 7, e36957.	1.1	512
5	Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. MBio, 2014, 5, e01548-14.	1.8	500
6	Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 2013, 4, 202.	1.5	417
7	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	1.4	390
8	Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 2013, 4, 396.	1.5	367
9	Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 2012, 79, 763-772.	1.3	365
10	Intestinal Microbiota Development in Preterm Neonates and EffectÂofÂPerinatal Antibiotics. Journal of Pediatrics, 2015, 166, 538-544.	0.9	329
11	Genome analysis of <i>Bifidobacterium bifidum</i> PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19514-19519.	3.3	324
12	Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe, 2010, 16, 307-310.	1.0	271
13	Bifidobacteria and Their Health-Promoting Effects. Microbiology Spectrum, 2017, 5, .	1.2	266
14	Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol. PLoS ONE, 2013, 8, e68739.	1.1	257
15	Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Scientific Reports, 2015, 5, 15782.	1.6	233
16	Bifidobacteria and Their Molecular Communication with the Immune System. Frontiers in Microbiology, 2017, 8, 2345.	1.5	221
17	Role of sortase-dependent pili of <i>Bifidobacterium bifidum</i> PRL2010 in modulating bacterium–host interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11151-11156.	3.3	217
18	Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium. Applied and Environmental Microbiology, 2014, 80, 6290-6302.	1.4	203

#	Article	IF	Citations
19	Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection, 2006, 69, 2011-2015.	0.8	201
20	Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 2004, 37, 839-850.	2.9	192
21	Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Scientific Reports, 2016, 6, 24072.	1.6	188
22	Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology (United Kingdom), 2010, 156, 3232-3242.	0.7	185
23	Proteomic Analysis of Global Changes in Protein Expression during Bile Salt Exposure of Bifidobacterium longum NCIMB 8809. Journal of Bacteriology, 2005, 187, 5799-5808.	1.0	182
24	Mucin Degradation by <i>Bifidobacterium</i> Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2008, 74, 1936-1940.	1.4	180
25	Hop Resistance in the Beer Spoilage Bacterium Lactobacillus brevis Is Mediated by the ATP-Binding Cassette Multidrug Transporter HorA. Journal of Bacteriology, 2001, 183, 5371-5375.	1.0	175
26	Low-pH Adaptation and the Acid Tolerance Response of <i>Bifidobacterium longum</i> Biotype longum. Applied and Environmental Microbiology, 2007, 73, 6450-6459.	1.4	173
27	Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Frontiers in Physiology, 2019, 10, 185.	1.3	171
28	Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Frontiers in Microbiology, 2018, 9, 2426.	1.5	170
29	Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology, 2014, 80, 9-18.	1.4	159
30	Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 227-237.	1.9	156
31	Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. International Journal of Molecular Sciences, 2021, 22, 1010.	1.8	142
32	Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology, 2010, 138, 157-165.	2.1	141
33	Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Scientific Reports, 2020, 10, 14112.	1.6	140
34	Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 6-15.	1.0	137
35	The Purified and Functionally Reconstituted Multidrug Transporter LmrA ofLactococcus lactisMediates the Transbilayer Movement of Specific Fluorescent Phospholipidsâ€. Biochemistry, 1999, 38, 16298-16306.	1.2	136
36	Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME Journal, 2009, 3, 745-751.	4.4	128

#	Article	IF	Citations
37	Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. International Journal of Food Microbiology, 2004, 94, 79-86.	2.1	125
38	Adaptation and Response of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> to Bile: a Proteomic and Physiological Approach. Applied and Environmental Microbiology, 2007, 73, 6757-6767.	1.4	125
39	Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut. PLoS ONE, 2012, 7, e44229.	1.1	123
40	Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity. PLoS ONE, 2011, 6, e24776.	1.1	120
41	Mediterranean diet and faecal microbiota: a transversal study. Food and Function, 2016, 7, 2347-2356.	2.1	120
42	Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. International Journal of Food Microbiology, 2011, 149, 28-36.	2.1	109
43	Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation. Applied and Environmental Microbiology, 2012, 78, 3992-3998.	1.4	109
44	Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study. International Journal of Molecular Sciences, 2016, 17, 649.	1.8	109
45	Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. International Journal of Food Microbiology, 2011, 147, 97-104.	2.1	108
46	Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International, 2012, 46, 99-107.	2.9	102
47	The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome, 2019, 7, 100.	4.9	101
48	Bile Affects the Synthesis of Exopolysaccharides by <i>Bifidobacterium animalis</i> . Applied and Environmental Microbiology, 2009, 75, 1204-1207.	1.4	100
49	Purification and Functional Characterization of a Novel α- l -Arabinofuranosidase from Bifidobacterium longum B667. Applied and Environmental Microbiology, 2003, 69, 5096-5103.	1.4	99
50	Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Scientific Reports, 2016, 6, 23971.	1.6	97
51	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	2.2	95
52	How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 2011, 6, 307-318.	1.2	94
53	The infant gut microbiome as a microbial organ influencing host well-being. Italian Journal of Pediatrics, 2020, 46, 16.	1.0	93
54	Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis. PLoS ONE, 2016, 11, e0147809.	1.1	90

#	Article	IF	CITATIONS
55	Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System. Frontiers in Microbiology, 2015, 6, 1285.	1.5	88
56	Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. International Dairy Journal, 2006, 16, 850-855.	1.5	87
57	Cell envelope changes in <i>Bifidobacterium animalis</i> ssp. <i>lactis</i> as a response to bile. FEMS Microbiology Letters, 2007, 274, 316-322.	0.7	85
58	The F1FO-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environmental Microbiology, 2006, 8, 1825-1833.	1.8	83
59	The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology (United Kingdom), 2009, 155, 957-967.	0.7	82
60	Insights from genomes of representatives of the human gut commensal <scp><i>B</i></scp> <i>ifidobacterium bifidum</i> . Environmental Microbiology, 2015, 17, 2515-2531.	1.8	80
61	Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. International Journal of Food Microbiology, 2010, 142, 132-141.	2.1	78
62	Microbiota/Host Crosstalk Biomarkers: Regulatory Response of Human Intestinal Dendritic Cells Exposed to Lactobacillus Extracellular Encrypted Peptide. PLoS ONE, 2012, 7, e36262.	1.1	78
63	Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2007, 73, 4385-4388.	1.4	75
64	Two Different Tetracycline Resistance Mechanisms, Plasmid-Carried <i>tet</i> (L) and Chromosomally Located Transposon-Associated <i>tet</i> (M), Coexist in <i>Lactobacillus sakei</i> Rits 9. Applied and Environmental Microbiology, 2008, 74, 1394-1401.	1.4	75
65	Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Frontiers in Immunology, 2017, 8, 823.	2.2	75
66	Molecules Produced by Probiotics and Intestinal Microorganisms with Immunomodulatory Activity. Nutrients, 2020, 12, 391.	1.7	74
67	Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE, 2015, 10, e0133661.	1.1	73
68	Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile $\hat{a} \in \text{``}$ A preliminary study. International Journal of Food Microbiology, 2007, 113, 228-232.	2.1	71
69	Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine, 2012, 30, 825-829.	1.7	69
70	Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiology Letters, 2013, 340, 1-10.	0.7	68
71	Ranking the impact of human health disorders on gut metabolism: Systemic lupus erythematosus and obesity as study cases. Scientific Reports, 2015, 5, 8310.	1.6	68
72	Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe, 2013, 21, 9-17.	1.0	67

#	Article	IF	Citations
73	Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response. Applied and Environmental Microbiology, 2014, 80, 730-740.	1.4	67
74	Characterisation of a Bifidobacterium strain with acquired resistance to cholateâ€"A preliminary study. International Journal of Food Microbiology, 2003, 82, 191-198.	2.1	66
75	Bile-Inducible Efflux Transporter from <i>Bifidobacterium longum</i> NCC2705, Conferring Bile Resistance. Applied and Environmental Microbiology, 2009, 75, 3153-3160.	1.4	66
76	A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose. Applied and Environmental Microbiology, 2005, 71, 6564-6570.	1.4	65
77	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.1	65
78	Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Applied Microbiology and Biotechnology, 2015, 99, 6813-6829.	1.7	64
79	Genetic Basis of Tetracycline Resistance in <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> . Applied and Environmental Microbiology, 2010, 76, 3364-3369.	1.4	61
80	Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. International Journal of Food Microbiology, 2005, 101, 341-346.	2.1	60
81	Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe, 2012, 18, 378-380.	1.0	60
82	Association of Polyphenols from Oranges and Apples with Specific Intestinal Microorganisms in Systemic Lupus Erythematosus Patients. Nutrients, 2015, 7, 1301-1317.	1.7	60
83	Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Frontiers in Microbiology, 2020, 11, 581997.	1.5	60
84	Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydrate Research, 2011, 346, 2710-2717.	1.1	59
85	Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 2014, 178, 50-59.	2.1	59
86	Discovering Novel Bile Protection Systems in Bifidobacterium breve UCC2003 through Functional Genomics. Applied and Environmental Microbiology, 2012, 78, 1123-1131.	1.4	58
87	Probiotic fermented milks: Present and future. International Journal of Dairy Technology, 2009, 62, 472-483.	1.3	57
88	Altered human gut dendritic cell properties in ulcerative colitis are reversed by <i>Lactobacillus plantarum</i> extracellular encrypted peptide STp. Molecular Nutrition and Food Research, 2014, 58, 1132-1143.	1.5	56
89	Oneâ€year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environmental Microbiology, 2017, 19, 1536-1551.	1.8	54
90	Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. Anaerobe, 2014, 26, 24-30.	1.0	53

#	Article	IF	Citations
91	Eating microRNAs: pharmacological opportunities for crossâ€kingdom regulation and implications in host gene and gut microbiota modulation. British Journal of Pharmacology, 2021, 178, 2218-2245.	2.7	53
92	Technological and probiotic selection criteria of a bile-adapted Bifidobacterium animalis subsp. lactis strain. International Dairy Journal, 2010, 20, 800-805.	1.5	52
93	Interaction of Bifidobacterium bifidum LMG13195 with HT29 Cells Influences Regulatory-T-Cell-Associated Chemokine Receptor Expression. Applied and Environmental Microbiology, 2012, 78, 2850-2857.	1.4	52
94	HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Scientific Reports, 2016, 6, 26192.	1.6	50
95	Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. Journal of Antimicrobial Chemotherapy, 2008, 62, 688-693.	1.3	49
96	Molecular Analysis of tet(W) Gene-Mediated Tetracycline Resistance in Dominant Intestinal Bifidobacterium Species from Healthy Humans. Applied and Environmental Microbiology, 2006, 72, 7377-7379.	1.4	48
97	Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research, 2013, 69, 127-136.	3.1	48
98	Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Human Development, 2011, 87, 511-513.	0.8	47
99	Characterization of the bile and gall bladder microbiota of healthy pigs. MicrobiologyOpen, 2014, 3, 937-949.	1.2	46
100	Proteomics of stress response in Bifidobacterium. Frontiers in Bioscience - Landmark, 2008, Volume, 6905.	3.0	45
101	Extracellular molecular effectors mediating probiotic attributes. FEMS Microbiology Letters, 2014, 359, 1-11.	0.7	45
102	Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model. Frontiers in Microbiology, 2016, 7, 868.	1.5	45
103	Toward improving technological and functional properties of probiotics in foods. Trends in Food Science and Technology, 2012, 26, 56-63.	7.8	44
104	Catabolism of Glucose and Lactose in Bifidobacterium animalis subsp. lactis, Studied by ¹³ C Nuclear Magnetic Resonance. Applied and Environmental Microbiology, 2013, 79, 7628-7638.	1.4	44
105	Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Scientific Reports, 2015, 5, 16807.	1.6	44
106	Modulation of the <i>eps </i> ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiology Ecology, 2016, 92, fiw 056.	1.3	44
107	Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence?. Current Opinion in Rheumatology, 2016, 28, 515-522.	2.0	43
108	Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Applied Microbiology and Biotechnology, 2015, 99, 6865-6877.	1.7	42

#	Article	IF	CITATIONS
109	Phylogenetic classification of ten novel species belonging to the genus Bifidobacterium comprising B. phasiani sp. nov., B. pongonis sp. nov., B. saguinibicoloris sp. nov., B. colobi sp. nov., B. simiiventris sp. nov., B. santillanense sp. nov., B. miconis sp. nov., B. amazonense sp. nov., B. pluvialisilvae sp. nov., and B. miconisargentati sp. nov. Systematic and Applied Microbiology, 2021, 44, 126273.	1.2	42
110	Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. International Journal of Food Microbiology, 2014, 175, 6-13.	2.1	41
111	Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology, 2011, 162, 514-519.	1.0	40
112	Tackling probiotic and gut microbiota functionality through proteomics. Journal of Proteomics, 2016, 147, 28-39.	1.2	40
113	Microbiota and Derived Parameters in Fecal Samples of Infants with Non-IgE Cow's Milk Protein Allergy under a Restricted Diet. Nutrients, 2018, 10, 1481.	1.7	40
114	Secondary and Tertiary Structure Changes of Reconstituted LmrA Induced by Nucleotide Binding or Hydrolysis. Journal of Biological Chemistry, 2000, 275, 10962-10967.	1.6	39
115	Molecular Clues To Understand the Aerotolerance Phenotype of Bifidobacterium animalis subsp. lactis. Applied and Environmental Microbiology, 2012, 78, 644-650.	1.4	39
116	Structure and Dynamics of the Membrane-Embedded Domain of LmrA Investigated by Coupling Polarized ATR-FTIR Spectroscopy and 1H/2H Exchangeâ€. Biochemistry, 2001, 40, 11876-11886.	1.2	38
117	Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity inBifidobacterium. FEMS Microbiology Letters, 2004, 235, 35-41.	0.7	38
118	<i>Lactobacillus plantarum</i> Extracellular Chitin-Binding Protein and Its Role in the Interaction between Chitin, Caco-2 Cells, and Mucin. Applied and Environmental Microbiology, 2011, 77, 1123-1126.	1.4	38
119	A Single Mutation in the Gene Responsible for the Mucoid Phenotype of Bifidobacterium animalis subsp. lactis Confers Surface and Functional Characteristics. Applied and Environmental Microbiology, 2015, 81, 7960-7968.	1.4	38
120	Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. International Journal of Food Microbiology, 2009, 133, 148-153.	2.1	37
121	Selection of a Bifidobacterium animalis subsp. <i>lactis</i> Strain with a Decreased Ability To Produce Acetic Acid. Applied and Environmental Microbiology, 2012, 78, 3338-3342.	1.4	37
122	Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology (United Kingdom), 2006, 152, 3497-3505.	0.7	34
123	Antibiotic resistance genes in food and gut (non-pathogenic) bacteria. Bad genes in good bugs. Frontiers in Microbiology, 2014, 5, 754.	1.5	34
124	Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydrate Polymers, 2021, 264, 117980.	5.1	32
125	Improved Cloning Vectors for Bifidobacteria, Based on the <i>Bifidobacterium catenulatum</i> pBC1 Replicon. Applied and Environmental Microbiology, 2008, 74, 4656-4665.	1.4	31
126	Bacterial and Eukaryotic Phosphoketolases: Phylogeny, Distribution and Evolution. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 37-51.	1.0	31

#	Article	IF	CITATIONS
127	A Preliminary Analysis of <i>Bifidobacterium longum</i> Exported Proteins by Two-Dimensional Electrophoresis. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 74-79.	1.0	30
128	Omics for the study of probiotic microorganisms. Food Research International, 2013, 54, 1061-1071.	2.9	30
129	Interaction of Intestinal Microorganisms with the Human Host in the Framework of Autoimmune Diseases. Frontiers in Immunology, 2015, 6, 594.	2.2	30
130	Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions. Frontiers in Microbiology, 2016, 7, 1193.	1.5	30
131	Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Scientific Reports, 2020, 10, 21829.	1.6	29
132	A bileâ€inducible membrane protein mediates bifidobacterial bile resistance. Microbial Biotechnology, 2012, 5, 523-535.	2.0	28
133	Polymorphism of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Journal of Applied Microbiology, 1998, 84, 255-262.	1.4	27
134	An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin. Applied and Environmental Microbiology, 2013, 79, 6059-6066.	1.4	26
135	Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects. Food and Function, 2016, 7, 104-109.	2.1	26
136	Structure-function analysis of multidrug transporters in Lactococcus lactis. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 201-206.	1.4	25
137	Induction of \hat{l} ±- l -arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Archives of Microbiology, 2007, 187, 145-153.	1.0	24
138	A flagellin-producing Lactococcusâ€f strain: interactions with mucin and enteropathogens. FEMS Microbiology Letters, 2011, 318, 101-107.	0.7	24
139	Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiology Letters, 2011, 314, 125-130.	0.7	24
140	Association of Levels of Antibodies from Patients with Inflammatory Bowel Disease with Extracellular Proteins of Food and Probiotic Bacteria. BioMed Research International, 2014, 2014, 1-8.	0.9	22
141	Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis. Frontiers in Microbiology, 2017, 8, 1405.	1.5	22
142	Mosaic-Like Sequences Containing Transposon, Phage, and Plasmid Elements among <i>Listeria monocytogenes</i> Plasmids. Applied and Environmental Microbiology, 2010, 76, 4851-4857.	1.4	21
143	The Effects of <i>Bifidobacterium breve </i> on Immune Mediators and Proteome of HT29 Cells Monolayers. BioMed Research International, 2015, 2015, 1-6.	0.9	21
144	Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends in Food Science and Technology, 2021, 118, 399-417.	7.8	21

#	Article	IF	CITATIONS
145	Duplication of the \$beta;-galactosidase gene in some Lactobacillus plantarum strains. International Journal of Food Microbiology, 1999, 48, 113-123.	2.1	20
146	Macrolide Resistance Mediated by a Bifidobacterium breve Membrane Protein. Antimicrobial Agents and Chemotherapy, 2005, 49, 4379-4381.	1.4	20
147	Some Chemical and Bacteriological Characteristics of Regional Cheeses from Asturias, Spain. Journal of Food Protection, 1996, 59, 509-515.	0.8	19
148	Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. <i>lactis</i> AldOxR. Applied and Environmental Microbiology, 2013, 79, 3870-3874.	1.4	19
149	A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
150	Fecal Changes Following Introduction of Milk in Infants With Outgrowing Non-IgE Cow's Milk Protein Allergy Are Influenced by Previous Consumption of the Probiotic LGG. Frontiers in Immunology, 2019, 10, 1819.	2.2	19
151	Acquisition of Bile Salt Resistance Promotes Antibiotic Susceptibility Changes in Bifidobacterium. Journal of Food Protection, 2005, 68, 1916-1919.	0.8	18
152	Bioactive compounds from regular diet and faecal microbial metabolites. European Journal of Nutrition, 2018, 57, 487-497.	1.8	18
153	Filling the gap between collection, transport and storage of the human gut microbiota. Scientific Reports, 2019, 9, 8327.	1.6	18
154	Oleanolic acid ameliorates intestinal alterations associated with EAE. Journal of Neuroinflammation, 2020, 17, 363.	3.1	18
155	Decoding the Genomic Variability among Members of the Bifidobacterium dentium Species. Microorganisms, 2020, 8, 1720.	1.6	18
156	Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations. Food Hydrocolloids, 2022, 133, 107958.	5.6	18
157	Controlled Gene Expression in Bifidobacteria by Use of a Bile-Responsive Element. Applied and Environmental Microbiology, 2012, 78, 581-585.	1.4	17
158	Evolutionary development and coâ€phylogeny of primateâ€associated bifidobacteria. Environmental Microbiology, 2020, 22, 3375-3393.	1.8	17
159	Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. International Journal of Food Microbiology, 1998, 39, 231-236.	2.1	16
160	Phenotypic characterization of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Food Microbiology, 2000, 17, 461-467.	2.1	16
161	Reagentless identification of human bifidobacteria by intrinsic fluorescence. Journal of Microbiological Methods, 2007, 69, 100-106.	0.7	16
162	Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505. Journal of Bacteriology, 2012, 194, 4465-4465.	1.0	16

#	Article	IF	CITATIONS
163	Diet: Cause or Consequence of the Microbial Profile of Cholelithiasis Disease?. Nutrients, 2018, 10, 1307.	1.7	16
164	Artichoke pectic oligosaccharide characterisation and virtual screening of prebiotic properties using in silico colonic fermentation. Carbohydrate Polymers, 2021, 255, 117367.	5.1	16
165	A proteomic approach to cold acclimation of Staphylococcus aureus CECT 976 grown at room and human body temperatures. International Journal of Food Microbiology, 2010, 144, 160-168.	2.1	15
166	Exopolysaccharides synthesized by Bifidobacterium animalis subsp. lactis interact with TLR4 in intestinal epithelial cells. Anaerobe, 2019, 56, 98-101.	1.0	15
167	Ubiquity and diversity of multidrug resistance genes inLactococcus lactisstrains isolated between 1936 and 1995. FEMS Microbiology Letters, 2006, 263, 21-25.	0.7	14
168	Safety Assessment of Probiotics. , 2009, , 1193-1235.		14
169	Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium. FEMS Microbiology Letters, 2004, 235, 35-41.	0.7	14
170	Susceptibility of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses to some antibiotics and heavy metal salts. Food Microbiology, 2001, 18, 67-73.	2.1	13
171	Bifidobacteria and Their Health-Promoting Effects. , 2018, , 73-98.		13
172	Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM- $1\hat{A}^{@}$) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients, 2020, 12, 3259.	1.7	13
173	Ruminococcoides bili gen. nov., sp. nov., a bile-resistant bacterium from human bile with autolytic behavior. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	13
174	Functional bacterial cultures for dairy applications: Towards improving safety, quality, nutritional and health benefit aspects. Journal of Applied Microbiology, 2022, 133, 212-229.	1.4	13
175	A new experimental approach to detect long-range conformational changes transmitted between the membrane and cytosolic domains of LmrA, a bacterial multidrug transporter. FEBS Letters, 2002, 530, 197-203.	1.3	12
176	Insights into physiological traits of Bifidobacterium animalis subsp. lactis BB-12 through membrane proteome analysis. Journal of Proteomics, 2012, 75, 1190-1200.	1.2	12
177	Behavior of Listeria monocytogenes during the Manufacture, Ripening, and Cold Storage of Afuega'l Pitu Cheese. Journal of Food Protection, 1997, 60, 689-693.	0.8	11
178	Labeling of Bifidobacterium longum Cells with 13 C-Substituted Leucine for Quantitative Proteomic Analyses. Applied and Environmental Microbiology, 2007, 73, 5653-5656.	1.4	11
179	The role of gut microbiota in lupus: what we know in 2018?. Expert Review of Clinical Immunology, 2018, 14, 787-792.	1.3	11
180	Abdominal distension after eating lettuce: The role of intestinal gas evaluated in vitro and by abdominal CT imaging. Neurogastroenterology and Motility, 2019, 31, e13703.	1.6	11

#	Article	IF	Citations
181	Revisiting the Metabolic Capabilities of Bifidobacterium longum susbp. longum and Bifidobacterium longum subsp. infantis from a Glycoside Hydrolase Perspective. Microorganisms, 2020, 8, 723.	1.6	11
182	Human cecum content modulates production of extracellular proteins by food and probiotic bacteria. FEMS Microbiology Letters, 2011, 324, 189-194.	0.7	10
183	Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics. Future Microbiology, 2016, 11, 467-475.	1.0	10
184	Biological Activities and Applications of Bifidobacterial Exopolysaccharides: From the Bacteria and Host Perspective., 2018,, 177-193.		10
185	Microbiota and oxidant-antioxidant balance in systemic lupus erythematosus. Nutricion Hospitalaria, 2017, 34, 934-941.	0.2	10
186	Survival Strategies and Metabolic Interactions between Ruminococcus gauvreauii and <i>Ruminococcoides bili</i>); Isolated from Human Bile. Microbiology Spectrum, 2022, 10, .	1.2	10
187	Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance. Antonie Van Leeuwenhoek, 1999, 76, 347-352.	0.7	9
188	Molecular pharmacological characterization of two multidrug transporters in Lactococcus lactis., 2000, 85, 245-249.		9
189	Genome Sequence of Parascardovia denticolens IPLA 20019, Isolated from Human Breast Milk. Journal of Bacteriology, 2012, 194, 4776-4777.	1.0	9
190	Arabinoxylan and Pectin Metabolism in Crohn's Disease Microbiota: An In Silico Study. International Journal of Molecular Sciences, 2022, 23, 7093.	1.8	9
191	In silico Approach for Unveiling the Glycoside Hydrolase Activities in Faecalibacterium prausnitzii Through a Systematic and Integrative Large-Scale Analysis. Frontiers in Microbiology, 2019, 10, 517.	1.5	8
192	Effect of acquired resistance to bile salts on enzymatic activities involved in the utilisation of carbohydrates by bifidobacteria. An overview. Dairy Science and Technology, 2005, 85, 113-123.	0.9	8
193	Fatty acids intake and immune parameters in the elderly. Nutricion Hospitalaria, 2013, 28, 474-8.	0.2	8
194	The extracellular proteins of Lactobacillus acidophilus DSM 20079T display anti-inflammatory effect in both in piglets, healthy human donors and Crohn's Disease patients. Journal of Functional Foods, 2020, 64, 103660.	1.6	6
195	Methods for Isolation and Recovery of Bifidobacteria. Methods in Molecular Biology, 2021, 2278, 1-12.	0.4	6
196	Precision modification of the human gut microbiota targeting surface-associated proteins. Scientific Reports, 2021, 11, 1270.	1.6	6
197	Co-culture affects protein profile and heat tolerance of Lactobacillus delbrueckii subsp. lactis and Bifidobacterium longum. Food Research International, 2013, 54, 1080-1083.	2.9	5
198	Human Colon-Derived Soluble Factors Modulate Gut Microbiota Composition. Frontiers in Oncology, 2015, 5, 86.	1.3	5

#	Article	IF	Citations
199	Degenerate PCR primers for detecting putative priming glycosyltransferase genes in Bifidobacterium strains. Beneficial Microbes, 2015, 6, 553-562.	1.0	5
200	Exopolysaccharide Producing Bifidobacterium animalis subsp. lactis Strains Modify the Intestinal Microbiota and the Plasmatic Cytokine Levels of BALB/c Mice According to the Type of Polymer Synthesized. Frontiers in Microbiology, 2020, 11, 601233.	1.5	5
201	Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction. Environmental Microbiology, 2021, 23, 3294-3305.	1.8	5
202	A Machine Learning Approach to Study Glycosidase Activities from Bifidobacterium. Microorganisms, 2021, 9, 1034.	1.6	5
203	Production of human growth hormone by Lactococcus lactis. Journal of Bioscience and Bioengineering, 2010, 109, 322-324.	1.1	4
204	Cell wall hydrolase as a surface-associated protein target for the specific detection of Lactobacillus rhamnosus using flow cytometry. Innovative Food Science and Emerging Technologies, 2020, 59, 102240.	2.7	4
205	Determination of Bile Salt Hydrolase Activity in Bifidobacteria. Methods in Molecular Biology, 2021, 2278, 149-155.	0.4	4
206	Editorial: Role of Bifidobacteria in Human and Animal Health and Biotechnological Applications. Frontiers in Microbiology, 2021, 12, 785664.	1.5	4
207	Fluorescence spectroscopy: a rapid tool for assessing tetracycline resistance in Bifidobacterium longum. Canadian Journal of Microbiology, 2006, 52, 740-746.	0.8	3
208	Stress Responses of Bifidobacteria. , 2011, , 323-347.		3
209	Genome Sequence of the Immunomodulatory Strain Bifidobacterium bifidum LMG 13195. Journal of Bacteriology, 2012, 194, 6997-6997.	1.0	3
210	Computational approach to the systematic prediction of glycolytic abilities: looking into human microbiota. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18, 1-1.	1.9	3
211	In silico and functional analyses of immunomodulatory peptides encrypted in the human gut metaproteome. Journal of Functional Foods, 2020, 70, 103969.	1.6	3
212	Convergence of flow cytometry and bacteriology. Current and future applications: a focus on food and clinical microbiology. Critical Reviews in Microbiology, 2023, 49, 556-577.	2.7	3
213	Functional Characterisation of Bile Metagenome: Study of Metagenomic Dark Matter. Microorganisms, 2021, 9, 2201.	1.6	2
214	Resequencing the Genome of Bifidobacterium breve Strain CECT7263. Genome Announcements, 2017, 5, .	0.8	1
215	Reply: "Letter to the editor Re: Diaz M., et al. Nutrients 2018, 10, 1481― Nutrients, 2019, 11, 476.	1.7	1
216	Mechanisms of Gut Microbiota Modulation by Food, Probiotics, Prebiotics and More., 2021, , 84-84.		1

ARTICLE IF CITATIONS

217 Evidence of the In Vitro and In Vivo Immunological Relevance of Bifidobacteria., 2018, , 295-305.