
## Hussien Sabbah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8270943/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Silicon Surfaceâ€Bound Redoxâ€Active Conjugated Wires Derived From Mono―and Dinuclear Iron(II) and<br>Ruthenium(II) Oligo(phenyleneethynylene) Complexes. Advanced Materials, 2008, 20, 1952-1956.          | 21.0 | 54        |
| 2  | Surface energy and hybridization studies of amorphous carbon surfaces. Applied Surface Science, 2008, 254, 4980-4991.                                                                                       | 6.1  | 51        |
| 3  | Covalent Grafting of Organic Layers on Sputtered Amorphous Carbon:  Surface Preparation and Coverage Density. Journal of Physical Chemistry C, 2007, 111, 3099-3108.                                        | 3.1  | 31        |
| 4  | Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGel3-Based Solar Cells. Materials, 2022, 15, 3229.                                                                                           | 2.9  | 25        |
| 5  | Numerical Simulation and Optimization of Highly Stable and Efficient Lead-Free Perovskite FA1â^'xCsxSnI3-Based Solar Cells Using SCAPS. Materials, 2022, 15, 4761.                                          | 2.9  | 20        |
| 6  | Bulk and surface plasmon excitations in amorphous carbon measured by core-level photoelectron spectroscopy. Applied Surface Science, 2009, 255, 6598-6606.                                                  | 6.1  | 19        |
| 7  | Thermal grafting of organic monolayers on amorphous carbon and silicon (111) surfaces: A comparative study. Diamond and Related Materials, 2009, 18, 1074-1080.                                             | 3.9  | 11        |
| 8  | Amorphous titanium dioxide ultra-thin films for self-cleaning surfaces. Materials Express, 2013, 3, 171-175.                                                                                                | 0.5  | 10        |
| 9  | Modeling Single-Walled Boron Nitride Nanotube Pressure Sensor: Density Functional Study.<br>Nanoscience and Nanotechnology Letters, 2015, 7, 500-506.                                                       | 0.4  | 10        |
| 10 | Derivation of the near-surface dielectric function of amorphous silicon from photoelectron loss spectra. Journal of Non-Crystalline Solids, 2012, 358, 2019-2022.                                           | 3.1  | 6         |
| 11 | Effect of sputtering parameters on the self-cleaning properties of amorphous titanium dioxide thin films. Journal of Coatings Technology Research, 2017, 14, 1423-1433.                                     | 2.5  | 6         |
| 12 | Thermal stability of perfluorinated molecular monolayers immobilized on pulsed laser deposited<br>amorphous carbon surfaces. IOP Conference Series: Materials Science and Engineering, 2010, 16,<br>012003. | 0.6  | 2         |
| 13 | Structural Characterization of Deformed Boron Nitride Nanotubes. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1838-1843.                                                                 | 0.4  | 2         |
| 14 | Pressure-Induced Phase Transitions of Single-Walled Carbon Nanotubes: Simulations of X-Ray<br>Diffraction. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2631-2635.                       | 0.4  | 1         |
| 15 | Selective patterning of covalent molecular grafting on doped amorphous silicon templates. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.                                | 0.8  | 0         |
| 16 | Modification of Amorphous Carbon Film Surfaces by Thermal Grafting of Alkene Molecules. Springer<br>Proceedings in Physics, 2009, , 91-93.                                                                  | 0.2  | 0         |