Guillaume Besnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8270679/publications.pdf

Version: 2024-02-01

141 papers 7,631 citations

41344 49 h-index 80 g-index

147 all docs

147 docs citations

147 times ranked

6521 citing authors

#	Article	IF	CITATIONS
1	New grass phylogeny resolves deep evolutionary relationships and discovers C ₄ origins. New Phytologist, 2012, 193, 304-312.	7.3	433
2	Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses. Current Biology, 2008, 18, 37-43.	3.9	324
3	Anatomical enablers and the evolution of C ₄ photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1381-1386.	7.1	239
4	The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122833.	2.6	212
5	C4 Photosynthesis Evolved in Grasses via Parallel Adaptive Genetic Changes. Current Biology, 2007, 17, 1241-1247.	3.9	211
6	Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biological Reviews, 2012, 87, 885-899.	10.4	185
7	Causes and evolutionary significance of genetic convergence. Trends in Genetics, 2010, 26, 400-405.	6.7	179
8	Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theoretical and Applied Genetics, 2001, 102, 251-258.	3.6	165
9	On the origins and domestication of the olive: a review and perspectives. Annals of Botany, 2018, 121, 385-403.	2.9	147
10	Phylogenomics of C4 Photosynthesis in Sedges (Cyperaceae): Multiple Appearances and Genetic Convergence. Molecular Biology and Evolution, 2009, 26, 1909-1919.	8.9	136
11	Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theoretical and Applied Genetics, 2002, 104, 1353-1361.	3.6	135
12	A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theoretical and Applied Genetics, 2003, 106, 1273-1282.	3.6	133
13	Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). Journal of Biogeography, 2007, 34, 736-752.	3.0	128
14	Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: Tertiary climatic shifts and lineage differentiation times. Annals of Botany, 2009, 104, 143-160.	2.9	126
15	Adaptive Evolution of C4 Photosynthesis through Recurrent Lateral Gene Transfer. Current Biology, 2012, 22, 445-449.	3.9	121
16	Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biology, 2011, 11, 80.	3.6	120
17	Evolutionary Switch and Genetic Convergence on rbcL following the Evolution of C4 Photosynthesis. Molecular Biology and Evolution, 2008, 25, 2361-2368.	8.9	117
18	From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. Journal of Experimental Botany, 2014, 65, 6711-6721.	4.8	109

#	Article	IF	CITATIONS
19	Cytoplasmic male sterility in the olive (Olea europaea L.). Theoretical and Applied Genetics, 2000, 100, 1018-1024.	3.6	102
20	Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources, 2014, 14, 966-975.	4.8	102
21	Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Molecular Ecology, 2007, 16, 2755-2767.	3.9	101
22	One-third of the plastid genes evolved under positive selection in PACMAD grasses. Planta, 2018, 247, 255-266.	3.2	99
23	The use of molecular markers for germplasm management in a French olive collection. Theoretical and Applied Genetics, 2003, 106, 521-529.	3 . 6	97
24	Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4416-4425.	7.1	94
25	Cultivar Identification in Olive Based on RAPD Markers. Journal of the American Society for Horticultural Science, 2001, 126, 668-675.	1.0	93
26	Polyploidy in the Olive Complex (Olea europaea): Evidence from Flow Cytometry and Nuclear Microsatellite Analyses. Annals of Botany, 2008, 101, 25-30.	2.9	92
27	Museomics illuminate the history of an extinct, paleoendemic plant lineage (<i>Hesperelaea</i> ,) Tj ETQq1 1 0.78 Linnean Society, 2016, 117, 44-57.	34314 rgB7 1.6	Γ /Overlock 87
28	High Genetic Diversity and Clonal Growth in Relict Populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Annals of Botany, 2005, 96, 823-830.	2.9	83
29	Madagascar's grasses and grasslands: anthropogenic or natural?. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152262.	2.6	83
30	Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2000, 323, 173-181.	0.8	81
31	Genetic diversity and differentiation processes in the ploidy series of <i>Olea europaea</i> L.: a multiscale approach from subspecies to insular populations. Molecular Ecology, 2009, 18, 454-467.	3.9	80
32	Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genetics Selection Evolution, 2001, 33, S251.	3.0	79
33	Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L Theoretical and Applied Genetics, 2006, 113, 575-583.	3.6	79
34	Integrating Phylogeny into Studies of C4 Variation in the Grasses. Plant Physiology, 2009, 149, 82-87.	4.8	79
35	On the origin of the invasive olives (Olea europaea L., Oleaceae). Heredity, 2007, 99, 608-619.	2.6	77
36	Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture. Annals of Botany, 2013, 112, 1293-1302.	2.9	77

#	ARTICLE	IF	Citations
37	Genomic organization of molecular differentiation in Norway spruce (Picea abies). Molecular Ecology, 2005, 14, 3191-3201.	3.9	76
38	Photosynthetic innovation broadens the niche within a single species. Ecology Letters, 2015, 18, 1021-1029.	6.4	75
39	Grass diversification in Madagascar: In situ radiation of two large C ₃ shade clades and support for a Miocene to Pliocene origin of C ₄ grassy biomes. Journal of Biogeography, 2018, 45, 750-761.	3.0	72
40	Evolutionary Insights on C4 Photosynthetic Subtypes in Grasses from Genomics and Phylogenetics. Genome Biology and Evolution, 2009, 1, 221-230.	2.5	70
41	Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus) Tj ETQq1 1 0.78431	14 rgBT /	Overlock 10
42	Evolution of C4 Phosphoenolpyruvate Carboxykinase in Grasses, from Genotype to Phenotype. Molecular Biology and Evolution, 2009, 26, 357-365.	8.9	65
43	Evolutionary implications of C ₃ –C ₄ intermediates in the grass <i>Alloteropsis semialata</i> . Plant, Cell and Environment, 2016, 39, 1874-1885.	5.7	64
44	Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. Plant Journal, 2019, 100, 143-157.	5.7	64
45	Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theoretical and Applied Genetics, 2002, 105, 139-144.	3.6	63
46	Title is missing!. Genetic Resources and Crop Evolution, 2001, 48, 165-182.	1.6	62
47	Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Molecular Ecology, 2009, 18, 2819-2831.	3.9	53
48	On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theoretical and Applied Genetics, 2002, 104, 1157-1163.	3.6	51
49	A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theoretical and Applied Genetics, 2004, 108, 1602-1613.	3.6	51
50	Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. Annals of Botany, 2013, 112, 1057-1066.	2.9	51
51	Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Molecular Ecology, 2016, 25, 6107-6123.	3.9	51
52	Valuing museum specimens: high-throughput DNA sequencing on historical collections of New Guinea crowned pigeons (<i>Goura</i>). Biological Journal of the Linnean Society, 2016, 117, 71-82.	1.6	51
53	Prospects on the evolutionary mitogenomics of plants: A case study on the olive family (Oleaceae). Molecular Ecology Resources, 2018, 18, 407-423.	4.8	49
54	Phylogenomics using lowâ€depth whole genome sequencing: A case study with the olive tribe. Molecular Ecology Resources, 2019, 19, 877-892.	4.8	48

#	Article	IF	CITATIONS
55	Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling. PLoS ONE, 2013, 8, e70507.	2.5	45
56	Single vs multiple independent olive domestications: the jury is (still) out. New Phytologist, 2016, 209, 466-470.	7.3	45
57	Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	45
58	Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. Comptes Rendus - Biologies, 2014, 337, 295-301.	0.2	41
59	Systematics, ecology and phylogeographic significance of Olea europaea L. ssp. maroccana (Greuter &) Tj ETQq1 1 Society, 2001, 137, 249-266.	l 0.78431 1.6	4 rgBT /Ove 40
60	Herbarium-based science in the twenty-first century. Botany Letters, 2018, 165, 323-327.	1.4	40
61	C ₄ anatomy can evolve via a single developmental change. Ecology Letters, 2019, 22, 302-312.	6.4	40
62	Sequence analysis of single-copy genes in two wild olive subspecies: nucleotide diversity and potential use for testing admixture. Genome, 2014, 57, 145-153.	2.0	39
63	Two independent C ₄ origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. American Journal of Botany, 2009, 96, 2234-2239.	1.7	38
64	Intricate patterns of phylogenetic relationships in the olive family as inferred from multi-locus plastid and nuclear DNA sequence analyses: A close-up on Chionanthus and Noronhia (Oleaceae). Molecular Phylogenetics and Evolution, 2013, 67, 367-378.	2.7	37
65	Cadmium Hyperaccumulation and Reproductive Traits in Natural Thlaspi caerulescens Populations. Plant Biology, 2006, 8, 64-72.	3.8	36
66	Intraspecific variability of the facultative meiotic parthenogenetic root-knot nematode (Meloidogyne) Tj ETQq0 0 (OrgBT /Ov	erlock 10 T
67	Evolutionary forces affecting synonymous variations in plant genomes. PLoS Genetics, 2017, 13, e1006799.	3.5	36
68	History of the invasive <scp>A</scp> frican olive tree in <scp>A</scp> ustralia and <scp>H</scp> awaii: evidence for sequential bottlenecks and hybridization with the <scp>M</scp> editerranean olive. Evolutionary Applications, 2014, 7, 195-211.	3.1	35
69	Spatial genetic structure in the Laperrine's olive (Olea europaea subsp. laperrinei), a long-living tree from the central Saharan mountains. Heredity, 2007, 99, 649-657.	2.6	34
70	Mitogenomics of Hesperelaea, an extinct genus of Oleaceae. Gene, 2016, 594, 197-202.	2.2	34
71	Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar. Annals of Botany, 2017, 119, 339-351.	2.9	34
72	Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 2006, 34, 667-677.	1.3	33

#	Article	IF	Citations
73	Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Genetic Resources and Crop Evolution, 2015, 62, 621-633.	1.6	33
74	Contrasting dispersal histories of broad―and fineâ€leaved temperate Loliinae grasses: range expansion, founder events, and the roles of distance and barriers. Journal of Biogeography, 2017, 44, 1980-1993.	3.0	32
75	Coexistence of diploids and triploids in a Saharan relict olive: Evidence from nuclear microsatellite and flow cytometry analyses. Comptes Rendus - Biologies, 2009, 332, 1115-1120.	0.2	31
76	Applying DNA barcoding for the study of geographical variation in host–parasitoid interactions. Molecular Ecology Resources, 2011, 11, 46-59.	4.8	31
77	<i>Thlaspi caerulescens </i> (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?. New Phytologist, 2009, 181, 974-984.	7.3	30
78	Molecular approach of genetic affinities between wild and ornamental Platanus. Euphytica, 2002, 126, 401-412.	1.2	29
79	A set of cross-species amplifying microsatellite markers developed from DNA sequence databanks inPicea(Pinaceae). Molecular Ecology Notes, 2003, 3, 380-383.	1.7	28
80	The Laperrine's olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Botanica Gallica, 2012, 159, 319-328.	0.9	28
81	Recovering the evolutionary history of crowned pigeons (Columbidae: Goura): Implications for the biogeography and conservation of New Guinean lowland birds. Molecular Phylogenetics and Evolution, 2018, 120, 248-258.	2.7	27
82	Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Systematic Biology, 2020, 69, 445-461.	5.6	27
83	Genome structure and content of the rice rootâ€knot nematode (<i>Meloidogyne graminicola</i>). Ecology and Evolution, 2020, 10, 11006-11021.	1.9	27
84	NADP-Malate Dehydrogenase Gene Evolution in Andropogoneae (Poaceae): Gene Duplication Followed by Sub-functionalization. Annals of Botany, 2005, 96, 1307-1314.	2.9	25
85	Resolving the Phylogeny of the Olive Family (Oleaceae): Confronting Information from Organellar and Nuclear Genomes. Genes, 2020, 11, 1508.	2.4	25
86	The genus <i>Olea</i> : molecular approaches of its structure and relationships to other Oleaceae. Acta Botanica Gallica, 2002, 149, 49-66.	0.9	24
87	Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata. Journal of Experimental Botany, 2019, 70, 3255-3268.	4.8	23
88	The recent and rapid spread of <i>Themeda triandra</i> . Botany Letters, 2017, 164, 327-337.	1.4	22
89	A set of primers for length and nucleotide-substitution polymorphism in chloroplastic DNA of Olea europaea L. (Oleaceae). Molecular Ecology Notes, 2003, 3, 651-653.	1.7	21
90	Species limits and diversification in the Madagascar olive (<i>Noronhia</i> , Oleaceae). Botanical Journal of the Linnean Society, 2014, 174, 141-161.	1.6	21

#	Article	IF	Citations
91	Cultivated Olive Diversification at Local and Regional Scales: Evidence From the Genetic Characterization of French Genetic Resources. Frontiers in Plant Science, 2019, 10, 1593.	3.6	21
92	SILVOLIVE, a Germplasm Collection of Wild Subspecies With High Genetic Variability as a Source of Rootstocks and Resistance Genes for Olive Breeding. Frontiers in Plant Science, 2020, 11, 629.	3.6	21
93	Phylogenomics indicates the "living fossil―lsoetes diversified in the Cenozoic. PLoS ONE, 2020, 15, e0227525.	2.5	20
94	Characterisation of the phosphoenolpyruvate carboxylase gene family in sugarcane (Saccharum spp.). Theoretical and Applied Genetics, 2003, 107, 470-478.	3.6	19
95	Late Miocene origin and recent population collapse of the Malagasy savanna olive tree (<i>Noronhia) Tj ETQq$1\ 1$</i>	0.784314 1.6	rgBT/Overlo
96	Utility of the Mitochondrial Genome in Plant Taxonomic Studies. Methods in Molecular Biology, 2021, 2222, 107-118.	0.9	19
97	Specifying the introgressed regions from H. argophyllus in cultivated sunflower (Helianthus annuus) Tj $$ ETQq 11 0	.784314 r 3.6	gBT /Overlo
98	Distribution, shape and clonal growth of the rare endemic tree Olea europaea subsp. laperrinei (Oleaceae) in the Saharan mountains of Niger. Plant Ecology, 2008, 198, 73-87.	1.6	18
99	Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201960.	2.6	18
100	Spatial segregation and realized niche shift during the parallel invasion of twoÂolive subspecies in southâ€eastern Australia. Journal of Biogeography, 2015, 42, 1930-1941.	3.0	17
101	Genome skimming and plastid microsatellite profiling of alder trees (Alnus spp., Betulaceae): phylogenetic and phylogeographical prospects. Tree Genetics and Genomes, 2017, 13, 1.	1.6	17
102	A new root-knot nematode Meloidogyne spartelensis n. sp. (Nematoda: Meloidogynidae) in Northern Morocco. European Journal of Plant Pathology, 2015, 143, 25-42.	1.7	16
103	First report of the root-knot nematode (Meloidogyne graminicola) in Madagascar rice fields. Australasian Plant Disease Notes, 2016, 11, 1.	0.7	16
104	Duplication history and molecular evolution of the rbcS multigene family in angiosperms. Journal of Experimental Botany, 2019, 70, 6127-6139.	4.8	16
105	On the Close Relatedness of Two Rice-Parasitic Root-Knot Nematode Species and the Recent Expansion of Meloidogyne graminicola in Southeast Asia. Genes, 2019, 10, 175.	2.4	16
106	Paternity tests support a diallelic selfâ€incompatibility system in a wild olive (<i>Olea europaea</i>) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf !
107	Geographical structure of genetic diversity in (i>Loudetia simplex (i) (Poaceae) in Madagascar and South Africa. Botanical Journal of the Linnean Society, 2021, 196, 81-99.	1.6	16
108	Effect of genetic convergence on phylogenetic inference. Molecular Phylogenetics and Evolution, 2012, 62, 921-927.	2.7	15

#	Article	IF	Citations
109	Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. Journal of Plant Research, 2006, 119, 479-487.	2.4	14
110	Plastid DNA variation in Prunus serotina var. serotina (Rosaceae), a North American tree invading Europe. European Journal of Forest Research, 2009, 128, 431-436.	2.5	13
111	Pollen-mediated gene flow in a highly fragmented landscape: consequences for defining a conservation strategy of the relict Laperrine's olive. Comptes Rendus - Biologies, 2009, 332, 662-672.	0.2	13
112	How anthropogenic changes may affect soil-borne parasite diversity? Plant-parasitic nematode communities associated with olive trees in Morocco as a case study. BMC Ecology, 2017, 17, 4.	3.0	13
113	The endemic â€~sugar canes' of Madagascar (Poaceae, Saccharinae: Lasiorhachis) are close relatives of sorghum. Botanical Journal of the Linnean Society, 2020, 192, 148-164.	1.6	13
114	Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?. Annals of Forest Science, 2008, 65, 109-109.	2.0	12
115	Grass survey of the Itremo Massif records endemic central highland grasses. Madagascar Conservation and Development, 2017, 12, .	0.2	12
116	Herbarium genomics retraces the origins of C4-specific carbonic anhydrase in Andropogoneae (Poaceae). Botany Letters, 2018, 165, 419-433.	1.4	11
117	Assessment of the C4 phosphoenolpyruvate carboxylase gene diversity in grasses (Poaceae). Theoretical and Applied Genetics, 2002, 105, 404-412.	3.6	10
118	Chloroplast DNA variations in Mediterranean olive. Journal of Horticultural Science and Biotechnology, 2008, 83, 51-54.	1.9	10
119	Diversity and evolution of plastomes in Saharan mimosoids: potential use for phylogenetic and population genetic studies. Tree Genetics and Genomes, 2017, 13, 1.	1.6	10
120	Complex evolutionary history of two ecologically significant grass genera, <i>Themeda</i> heteropogon (Poaceae: Panicoideae: Andropogoneae). Botanical Journal of the Linnean Society, 2021, 196, 437-455.	1.6	10
121	A set of primers for plastid indels and nuclear microsatellites in the invasive plant <i>Heracleum mantegazzianum</i> (Apiaceae) and their transferability to <i>Heracleum sphondylium</i> Ecology Resources, 2008, 8, 161-163.	4.8	8
122	The Genus <l>Sartidia</l> (Poaceae: Aristidoideae) in Madagascar. Systematic Botany, 2015, 40, 448-453.	0.5	6
123	A simple method for high molecular-weight genomic DNA extraction suitable for long-read sequencing from spores of an obligate biotroph oomycete. Journal of Microbiological Methods, 2020, 178, 106054.	1.6	6
124	Origin and Domestication. Compendium of Plant Genomes, 2016, , 1-12.	0.5	6
125	Evolutionary genomics of C4 photosynthesis in grasses requires a large species sampling. Comptes Rendus - Biologies, 2010, 333, 577-581.	0.2	5
126	An ecological and evolutionary perspective on the parallel invasion of two cross-compatible trees. AoB PLANTS, 2016, 8, .	2.3	5

#	Article	IF	CITATIONS
127	Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae). Scientific Reports, 2020, 10, 20629.	3.3	5
128	Microsatellite-assisted identification and comparative population genetics of Malagasy olive species (<i>Noronhia</i> spp., Oleaceae). Botany Letters, 2021, 168, 523-535.	1.4	5
129	Le statut d'hybride de <i>Platanus acerifolia</i> confirmé et celui de <i>P. densicoma</i> mis en évidence à l'aide de marqueurs génétiques moléculaires conséquences. Acta Botanica Gallica, 1997, 144, 243-251	0.9	4
130	Can microsatellite data allow identification of oleaster Plio-Pleistocene refuge zones in the Mediterranean Basin?. Journal of Biogeography, 2007, 34, 559-560.	3.0	3
131	Three New Grass Records for Madagascar. Candollea, 2014, 69, 85.	0.2	3
132	Genome sequence of the coffee root-knot nematode Meloidogyne exigua. Journal of Nematology, 2021, 53, 1-6.	0.9	3
133	Hybridization boosts dispersal of two contrasted ecotypes in a grass species. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212491.	2.6	3
134	Comment on Breton et al.: "Taming the wild and â€~wilding' the tame: tree breeding and dispersal in Australia and the Mediterranean― Plant Science, 2008, 175, 206-207.	3.6	2
135	Shotgun sequencing of the mitochondrial genome of the Aldabra giant tortoise (Aldabrachelys) Tj ETQq1 1 0.7843	B14 rgBT / 0.7	Qverlock 10
136	Contrasting Genetic Footprints among Saharan Olive Populations: Potential Causes and Conservation Implications. Plants, 2021, 10, 1207.	3.5	2
137	From the Mediterranean to the Pacific: re-circumscription towards <i>Notelaea s.l.</i> and historical biogeography of a generic complex in Oleinae (Oleaceae). Botanical Journal of the Linnean Society, 2022, 200, 360-377.	1.6	2
138	Adaptive response to olive cultivation in a generalist parasitic nematode (<i>Meloidogyne) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 T	гf ₁ 50 302 Tc
139	Late Miocene origin and recent population collapse of the Malagasy savanna olive tree (Noronhia) Tj ETQq $1\ 1\ 0.78$	84314 rgB 1.6	T ₁ /Overlock
140	Genome skims analysis of betel palms (Areca spp., Arecaceae) and development of a profiling method to assess their plastome diversity. Gene, 2021, 800, 145845.	2.2	O
141	Investigating pollination strategies in a changing world. Botany Letters, 2021, 168, 311-315.	1.4	0