## Nicola Huesing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8270364/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF        | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 1  | Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie - International<br>Edition, 1998, 37, 22-45.                                                                          | 13.8      | 1,341        |
| 2  | Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides.<br>Chemistry of Materials, 1995, 7, 2010-2027.                                                           | 6.7       | 892          |
| 3  | High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage<br>and catalysis. Chemical Society Reviews, 2012, 41, 5313.                                     | 38.1      | 395          |
| 4  | Sol–gel synthesis of monolithic materials with hierarchical porosity. Chemical Society Reviews, 2016,<br>45, 3377-3399.                                                                                | 38.1      | 272          |
| 5  | Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie - International<br>Edition, 1998, 37, 22-45.                                                                          | 13.8      | 230          |
| 6  | Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their<br>Nanoscale Morphology on Surfaces. Journal of the American Chemical Society, 2001, 123, 9445-9446. | 13.7      | 171          |
| 7  | Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels:<br>Environmental protection aspects. Applied Catalysis B: Environmental, 2018, 221, 530-555.    | 20.2      | 169          |
| 8  | Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases. Science, 2000, 290, 107-111.                                                                               | 12.6      | 166          |
| 9  | Glycol-Modified Silanes in the Synthesis of Mesoscopically Organized Silica Monoliths with<br>Hierarchical Porosity. Chemistry of Materials, 2005, 17, 4262-4271.                                      | 6.7       | 138          |
| 10 | Formation and Structure of Gel Networks from Si(OEt)4/(MeO)3Si(CH2)3NRâ€~2Mixtures (NRâ€~2= NH2or) Tj ET                                                                                               | QqQ 0 0 r | gBT /Overloc |
| 11 | Novel multifunctional polymethylsilsesquioxane–silk fibroin aerogel hybrids for environmental and thermal insulation applications. Journal of Materials Chemistry A, 2018, 6, 12598-12612.             | 10.3      | 130          |
| 12 | Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries.<br>Journal of Power Sources, 2009, 194, 1099-1104.                                                 | 7.8       | 124          |

| 13 | Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb<br>Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials &<br>Interfaces, 2019, 11, 17256-17269.                             | 8.0  | 115 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 14 | Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin<br>Biopolymers Inside a Silica Structure—An Approach towards 3D Printing of Aerogels. ACS Applied<br>Materials & Interfaces, 2018, 10, 22718-22730. | 8.0  | 114 |
| 15 | Glycol-Modified Silanes: Novel Possibilities for the Synthesis of Hierarchically Organized (Hybrid)<br>Porous Materials. Accounts of Chemical Research, 2007, 40, 885-894.                                                                               | 15.6 | 107 |

16 Formation and Structure of Porous Gel Networks from Si(OMe)4in the Presence of A(CH2)nSi(OR)3(A) Tj ETQq0 0 0 prgBT /Overlock 10

| 17 | Inorganicâ^'Organic Hybrid Polymers by Polymerization of Methacrylate- or Acrylate-Substituted<br>Oxotitanium Clusters with Methyl Methacrylate or Methacrylic Acid. Chemistry of Materials, 2002, 14,<br>2732-2740. | 6.7 | 93 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 18 | Porous Anatase Nanoparticles with High Specific Surface Area Prepared by Miniemulsion Technique.<br>Chemistry of Materials, 2008, 20, 5768-5780.                                                                     | 6.7 | 92 |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | TiO <sub>2</sub> Anatase Nanoparticle Networks: Synthesis, Structure, and Electrochemical<br>Performance. Small, 2011, 7, 1690-1696.                                      | 10.0 | 91        |
| 20 | Chemical phase separation strategies towards silica monoliths with hierarchical porosity. Chemical Society Reviews, 2013, 42, 3833.                                       | 38.1 | 90        |
| 21 | Periodically Mesostructured Silica Monoliths from Diol-Modified Silanes. Chemistry of Materials, 2003, 15, 2690-2692.                                                     | 6.7  | 87        |
| 22 | Electrochemical performance of mesoporous TiO2 anatase. Journal of Power Sources, 2008, 175, 510-516.                                                                     | 7.8  | 81        |
| 23 | Spontaneous Vesicle Formation of Short-Chain Amphiphilic Polysiloxane-b-Poly(ethylene oxide) Block<br>Copolymers. Langmuir, 2003, 19, 3198-3201.                          | 3.5  | 64        |
| 24 | Synthesis of Mesoporous Silica Particles and Capsules by Miniemulsion Technique. Chemistry of Materials, 2009, 21, 5088-5098.                                             | 6.7  | 61        |
| 25 | Influence of supercritical drying fluid on structure and properties of organically modified silica aerogels. Journal of Non-Crystalline Solids, 1995, 186, 37-43.         | 3.1  | 60        |
| 26 | Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules, 2020, 25, 4910.                                                                                | 3.8  | 59        |
| 27 | Influence of the nature of organic groups on the properties of organically modified silica aerogels.<br>Journal of Sol-Gel Science and Technology, 1994, 2, 103-108.      | 2.4  | 57        |
| 28 | Mesostructured Silicaâ^'Titania Mixed Oxide Thin Films. Chemistry of Materials, 2002, 14, 2429-2432.                                                                      | 6.7  | 56        |
| 29 | Facile Self-Assembly Processes to Phenylene-Bridged Silica Monoliths with Four Levels of Hierarchy.<br>Small, 2006, 2, 503-506.                                           | 10.0 | 56        |
| 30 | Preparation of silica–titania xerogels and aerogels by sol–gel processing of new single-source precursors. Journal of Materials Chemistry, 2002, 12, 2594-2596.           | 6.7  | 55        |
| 31 | Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions.<br>Langmuir, 2003, 19, 10073-10076.                                               | 3.5  | 52        |
| 32 | Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. Journal of Power Sources, 2013, 226, 122-126.                              | 7.8  | 51        |
| 33 | Magnetic behaviour of a hybrid polymer obtained from ethyl acrylate and the magnetic cluster<br>Mn12O12(acrylate)16. Journal of Materials Chemistry, 2004, 14, 1873-1878. | 6.7  | 50        |
| 34 | Simultaneous drying and chemical modification of hierarchically organized silica monoliths with organofunctional silanes. Journal of Materials Chemistry, 2005, 15, 3896. | 6.7  | 49        |
| 35 | Mesoporous anatase TiO2 composite electrodes: Electrochemical characterization and high rate performances. Journal of Power Sources, 2009, 189, 585-589.                  | 7.8  | 49        |
| 36 | Solidâ^'Solid Interface Formation in TiO2Nanoparticle Networks. Langmuir, 2011, 27, 1946-1953.                                                                            | 3.5  | 49        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mixed Silica Titania Materials Prepared from a Single-Source Solâ^'Gel Precursor:Â A Time-Resolved SAXS<br>Study of the Gelation, Aging, Supercritical Drying, and Calcination Processes. Chemistry of Materials,<br>2005, 17, 3146-3153. | 6.7  | 48        |
| 38 | Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica—Effect of<br>Pore-Level Anisotropy. Langmuir, 2017, 33, 5592-5602.                                                                                          | 3.5  | 47        |
| 39 | Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts. Applied Catalysis B: Environmental, 2009, 91, 470-480.                                              | 20.2 | 46        |
| 40 | Solâ^'Gel Processing of a Glycolated Cyclic Organosilane and Its Pyrolysis to Silicon Oxycarbide<br>Monoliths with Multiscale Porosity and Large Surface Areas. Chemistry of Materials, 2010, 22,<br>1509-1520.                           | 6.7  | 46        |
| 41 | Bovine Serum Albumin Adsorption on TiO <sub>2</sub> Colloids: The Effect of Particle Agglomeration and Surface Composition. Langmuir, 2017, 33, 2551-2558.                                                                                | 3.5  | 44        |
| 42 | Cellular mesoscopically organized silica monoliths with tailored surface chemistry by one-step<br>drying/extraction/surface modification processes. Journal of Materials Chemistry, 2005, 15, 1801.                                       | 6.7  | 40        |
| 43 | A Low Temperature Route toward Hierarchically Structured Titania Films for Thin Hybrid Solar Cells.<br>Advanced Functional Materials, 2016, 26, 7084-7093.                                                                                | 14.9 | 38        |
| 44 | Glycol-modified organosilanes in the synthesis of inorganic-organic silsesquioxane and silica monoliths. Journal of Sol-Gel Science and Technology, 2006, 40, 131-139.                                                                    | 2.4  | 37        |
| 45 | Spray-deposited zinc titanate films obtained <i>via</i> sol–gel synthesis for application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15008-15014.                                                          | 10.3 | 36        |
| 46 | Mixed metal oxide aerogels from tailor-made precursors. Journal of Supercritical Fluids, 2015, 106, 2-8.                                                                                                                                  | 3.2  | 30        |
| 47 | In Situ Measurement of Electrosorption-Induced Deformation Reveals the Importance of Micropores in Hierarchical Carbons. ACS Applied Materials & amp; Interfaces, 2017, 9, 23319-23324.                                                   | 8.0  | 29        |
| 48 | Oxygen reduction reaction activity and long-term stability of platinum nanoparticles supported on titania and titania-carbon nanotube composites. Journal of Power Sources, 2018, 400, 580-591.                                           | 7.8  | 28        |
| 49 | 3D Printing of Hierarchical Porous Silica and αâ€Quartz. Advanced Materials Technologies, 2018, 3,<br>1800060.                                                                                                                            | 5.8  | 27        |
| 50 | Molecular approaches towards mixed metal oxides and their behaviour in mixed oxide support Au catalysts for CO oxidation. Dalton Transactions, 2011, 40, 3269.                                                                            | 3.3  | 26        |
| 51 | Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction. Nano Energy, 2016, 29, 136-148.                                                                                                                    | 16.0 | 26        |
| 52 | Conventional and microwave assisted hydrothermal syntheses of 11 Ã tobermorite. Journal of<br>Materials Chemistry A, 2013, 1, 10318.                                                                                                      | 10.3 | 25        |
| 53 | Novel N, C doped Ti(IV)-oxides as Pt-free catalysts for the O 2 reduction reaction. Electrochimica Acta, 2014, 146, 335-345.                                                                                                              | 5.2  | 25        |
| 54 | Silica-silk fibroin hybrid (bio)aerogels: two-step versus one-step hybridization. Journal of Sol-Gel<br>Science and Technology, 2021, 98, 430-438.                                                                                        | 2.4  | 25        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Organofunctional silica aerogels. Journal of Sol-Gel Science and Technology, 1997, 8, 807-812.                                                                                                                | 2.4 | 24        |
| 56 | Space-confined click reactions in hierarchically organized silica monoliths. New Journal of Chemistry, 2011, 35, 681-690.                                                                                     | 2.8 | 24        |
| 57 | In Situ Modification of the Silica Backbone leading to Highly Porous Monolithic Hybrid<br>Organic–Inorganic Materials via Ambient Pressure Drying. ACS Applied Materials & Interfaces,<br>2014, 6, 1025-1029. | 8.0 | 24        |
| 58 | Adsorption/Desorption Characteristics of cis-Platin on Mercapto-Silylated Silica Surfaces. Langmuir, 2001, 17, 5958-5963.                                                                                     | 3.5 | 23        |
| 59 | Preparation of functionalized block copolymers based on a polysiloxane backbone by anionic ring-opening polymerization. Journal of Polymer Science Part A, 2002, 40, 1539-1551.                               | 2.3 | 23        |
| 60 | Mesoporous Au/TiO2 Catalysts for Low Temperature CO Oxidation. Catalysis Letters, 2007, 119, 199-208.                                                                                                         | 2.6 | 23        |
| 61 | Membrane Fuel Cell Cathode Catalysts Based on Titanium Oxide Supported Platinum Nanoparticles.<br>ChemPhysChem, 2014, 15, 2094-2107.                                                                          | 2.1 | 23        |
| 62 | Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based<br>Monoliths. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1189-1209.                                   | 2.8 | 23        |
| 63 | Flexible organofunctional aerogels. Dalton Transactions, 2017, 46, 8809-8817.                                                                                                                                 | 3.3 | 23        |
| 64 | Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts. Beilstein Journal of Nanotechnology, 2020, 11, 1-15.                                      | 2.8 | 23        |
| 65 | Synthesis of new types of polysiloxane based surfactants. Chemical Communications, 2001, , 137-138.                                                                                                           | 4.1 | 22        |
| 66 | Carboxylic acid-functionalized porous silica particles by a co-condensation approach. Journal of<br>Sol-Gel Science and Technology, 2017, 81, 138-146.                                                        | 2.4 | 22        |
| 67 | The role of nitrogen-doping and the effect of the pH on the oxygen reduction reaction on highly active nitrided carbon sphere catalysts. Electrochimica Acta, 2019, 299, 736-748.                             | 5.2 | 22        |
| 68 | Transition metal oxide-doped mesostructured silica films. Applied Catalysis A: General, 2003, 254, 297-310.                                                                                                   | 4.3 | 21        |
| 69 | Novel Sol–Gel Precursors for Thin Mesoporous Eu3+-Doped Silica Coatings as Efficient Luminescent<br>Materials Chemistry of Materials, 2012, 24, 3674-3683.                                                    | 6.7 | 21        |
| 70 | Lowâ€Temperature Route to Crystalline Titania Network Structures in Thin Films. ChemPhysChem, 2012,<br>13, 2412-2417.                                                                                         | 2.1 | 21        |
| 71 | Stable carboxylic acid derivatized alkoxy silanes. Chemical Communications, 2015, 51, 2339-2341.                                                                                                              | 4.1 | 21        |
| 72 | Multiscale characterization of hierarchically organized porous hybrid materials. Journal of<br>Materials Chemistry, 2012, 22, 2713-2720.                                                                      | 6.7 | 20        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Inorganic-Organic Hybrid Aerogels. Materials Research Society Symposia Proceedings, 1994, 346, 151.                                                                                                                    | 0.1  | 19        |
| 74 | Synthesis and electrocatalytic performance of spherical core-shell tantalum (oxy)nitride@nitrided carbon composites in the oxygen reduction reaction. Electrochimica Acta, 2017, 227, 367-381.                         | 5.2  | 19        |
| 75 | Hierarchically Organized and Anisotropic Porous Carbon Monoliths. Chemistry of Materials, 2020, 32, 3944-3951.                                                                                                         | 6.7  | 19        |
| 76 | New Strategy Using Glycol-Modified Silane to Synthesize Monodispersed Mesoporous Silica Spheres<br>Applicable to Colloidal Photonic Crystals. Langmuir, 2010, 26, 2002-2007.                                           | 3.5  | 18        |
| 77 | Monolithic Spiropyran-Based Porous Polysilsesquioxanes with Stimulus-Responsive Properties. ACS<br>Applied Materials & Interfaces, 2020, 12, 47754-47762.                                                              | 8.0  | 18        |
| 78 | Structural investigation of alumina silica mixed oxide gels prepared from organically modified precursors. Journal of Non-Crystalline Solids, 2007, 353, 1635-1644.                                                    | 3.1  | 17        |
| 79 | Clusterâ€Based Holey Semiconductors. Angewandte Chemie - International Edition, 2008, 47, 1992-1994.                                                                                                                   | 13.8 | 17        |
| 80 | Setting Directions: Anisotropy in Hierarchically Organized Porous Silica. Chemistry of Materials, 2017, 29, 7969-7975.                                                                                                 | 6.7  | 16        |
| 81 | The influence of drying and calcination on surface chemistry, pore structure and mechanical properties of hierarchically organized porous silica monoliths. Microporous and Mesoporous Materials, 2019, 288, 109578.   | 4.4  | 16        |
| 82 | Incorporation of Chromium Carbenes in a Silica Matrix by Sol-Gel Processing: Application to<br>Aminolysis of Alkoxycarbene Complexes. Chemistry - A European Journal, 2000, 6, 3006-3017.                              | 3.3  | 15        |
| 83 | Small-angle X-ray scattering investigation of the cluster distribution in inorganic–organic hybrid<br>polymers prepared from organically substituted metal oxide clusters. Comptes Rendus Chimie, 2004, 7,<br>495-502. | 0.5  | 15        |
| 84 | Macromolecule mediated bioinspired silica synthesis using a diol-modified silane precursor. Silicon Chemistry, 2005, 2, 279-285.                                                                                       | 0.8  | 15        |
| 85 | Synthesis and characterization of orthorhombic, 2d-centered rectangular and lamellar iron oxide doped silica films. Journal of Materials Chemistry, 2006, 16, 4443-4453.                                               | 6.7  | 15        |
| 86 | Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure. Beilstein Journal of Nanotechnology, 2011, 2, 486-498.                          | 2.8  | 15        |
| 87 | Nanofibers versus Nanopores: A Comparison of the Electrochemical Performance of Hierarchically<br>Ordered Porous Carbons. ACS Applied Energy Materials, 2019, 2, 5279-5291.                                            | 5.1  | 15        |
| 88 | Silica-Titania Mesostructured Films. Journal of Sol-Gel Science and Technology, 2003, 26, 615-619.                                                                                                                     | 2.4  | 14        |
| 89 | Silicone-Containing Surfactants as Templates in the Synthesis of Mesostructured Silicates. Journal of<br>Sol-Gel Science and Technology, 2003, 26, 609-613.                                                            | 2.4  | 14        |
| 90 | Enzyme adsorption-induced activity changes: a quantitative study on TiO2 model agglomerates.<br>Journal of Nanobiotechnology, 2017, 15, 55.                                                                            | 9.1  | 14        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Carboxylic acid-modified polysilsesquioxane aerogels for the selective and reversible complexation of heavy metals and organic molecules. Microporous and Mesoporous Materials, 2021, 312, 110759.        | 4.4 | 14        |
| 92  | Effects of the post-synthesis treatment on the structural properties of alumina-doped zirconia.<br>Journal of Non-Crystalline Solids, 2001, 285, 64-70.                                                   | 3.1 | 13        |
| 93  | The dependence of the elastic moduli of reaction bonded alumina on porosity. Journal of the<br>European Ceramic Society, 2007, 27, 35-39.                                                                 | 5.7 | 13        |
| 94  | Spherical Core–Shell Titanium (Oxy)nitride@Nitrided Carbon Composites as Catalysts for the Oxygen<br>Reduction Reaction: Synthesis and Electrocatalytic Performance. ChemElectroChem, 2016, 3, 1641-1654. | 3.4 | 13        |
| 95  | Carbon aerogels with improved flexibility by sphere templating. RSC Advances, 2018, 8, 27326-27331.                                                                                                       | 3.6 | 13        |
| 96  | Towards Real-Time Ion-Specific Structural Sensitivity in Nanoporous Carbon Electrodes Using In Situ<br>Anomalous Small-Angle X-ray Scattering. ACS Applied Materials & Interfaces, 2019, 11, 42214-42220. | 8.0 | 13        |
| 97  | Allosteric Regulation of Enzymatic Reactions in a Transparent Inorganic Sol-Gel Material. Journal of<br>Sol-Gel Science and Technology, 1999, 15, 57-62.                                                  | 2.4 | 12        |
| 98  | Alkyl-glycoside surfactants in the synthesis of mesoporous silica films. Silicon Chemistry, 2003, 2, 157-165.                                                                                             | 0.8 | 12        |
| 99  | Nanostructure of Gel-Derived Aluminosilicate Materials. Langmuir, 2008, 24, 949-956.                                                                                                                      | 3.5 | 12        |
| 100 | Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films. Journal of Materials Science, 2009, 44, 6786-6794.                           | 3.7 | 12        |
| 101 | Quantifying adsorption-induced deformation of nanoporous materials on different length scales.<br>Journal of Applied Crystallography, 2017, 50, 1404-1410.                                                | 4.5 | 12        |
| 102 | Mechanical Characterization of Hierarchical Structured Porous Silica by in Situ Dilatometry<br>Measurements during Gas Adsorption. Langmuir, 2019, 35, 2948-2956.                                         | 3.5 | 12        |
| 103 | Tunable block copolymers based on a polysiloxane backbone by anionic ring-opening polymerization.<br>Journal of Polymer Science Part A, 2004, 42, 3975-3985.                                              | 2.3 | 11        |
| 104 | Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect. Magnetic Resonance Imaging, 2007, 25, 489-492.                                | 1.8 | 11        |
| 105 | Mesoporous dendrimer silica monoliths studied by small-angle X-ray scattering. Journal of Materials<br>Chemistry, 2008, 18, 4783.                                                                         | 6.7 | 11        |
| 106 | Organosilica Monoliths with Multiscale Porosity: Detailed Investigation of the Influence of the Surfactant on Structure Formation. Silicon, 2009, 1, 19-28.                                               | 3.3 | 11        |
| 107 | Structure and luminescence of sol-gel synthesized anatase nanoparticles. Journal of Physics:<br>Conference Series, 2010, 209, 012039.                                                                     | 0.4 | 11        |
| 108 | Lowâ€Temperature Solâ€Gel Synthesis of Nanostructured Polymer/Titania Hybrid Films based on<br>Customâ€Made Poly(3â€Alkoxy Thiophene). ChemPhysChem, 2013, 14, 597-602.                                   | 2.1 | 11        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Potential of nanoparticles for allergen-specific immunotherapy – use of silica nanoparticles as vaccination platform. Expert Opinion on Drug Delivery, 2016, 13, 1777-1788.                                                                                                                  | 5.0  | 11        |
| 110 | In Situ Small-Angle Neutron Scattering Investigation of Adsorption-Induced Deformation in Silica with Hierarchical Porosity. Langmuir, 2019, 35, 11590-11600.                                                                                                                                | 3.5  | 11        |
| 111 | Reversibly compressible and freestanding monolithic carbon spherogels. Carbon, 2019, 153, 189-195.                                                                                                                                                                                           | 10.3 | 11        |
| 112 | Chemical Functionalization of Silica Aerogels. Materials Research Society Symposia Proceedings, 1996, 435, 339.                                                                                                                                                                              | 0.1  | 10        |
| 113 | Investigating morphology and electronic properties of self-assembled hybrid systems for solar cells.<br>Journal of Materials Chemistry, 2011, 21, 7765.                                                                                                                                      | 6.7  | 10        |
| 114 | Tannin-Furanic Foams Formed by Mechanical Agitation: Influence of Surfactant and Ingredient Ratios.<br>Polymers, 2021, 13, 3058.                                                                                                                                                             | 4.5  | 10        |
| 115 | Structure investigation of intelligent aerogels. Physica B: Condensed Matter, 2000, 276-278, 392-393.                                                                                                                                                                                        | 2.7  | 9         |
| 116 | The binary phase behavior of short-chain PDMS-b-PEO diblock copolymers in aqueous solutions in<br>dependence of the PDMS chain length—a combined polarized optical microscopy, 2H NMR and SAXS<br>study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 254, 37-48. | 4.7  | 9         |
| 117 | Hierarchically Organized Silica–Titania Monoliths Prepared under Purely Aqueous Conditions.<br>Chemistry - A European Journal, 2014, 20, 17409-17419.                                                                                                                                        | 3.3  | 9         |
| 118 | Impact of surfactants and acids on the sol–gel synthesis of MgO aerogels. Journal of Supercritical Fluids, 2015, 106, 133-139.                                                                                                                                                               | 3.2  | 9         |
| 119 | Biological effects of allergen–nanoparticle conjugates: uptake and immune effects determined on<br>hAELVi cells under submerged <i>vs.</i> air–liquid interface conditions. Environmental Science:<br>Nano, 2020, 7, 2073-2086.                                                              | 4.3  | 9         |
| 120 | Monolithic Carbon Spherogels as Freestanding Electrodes for Supercapacitors. ACS Applied Energy<br>Materials, 2021, 4, 11183-11193.                                                                                                                                                          | 5.1  | 9         |
| 121 | Raman spectroscopic analysis of the sol-gel processing of mixtures. Journal of Molecular Structure, 1997, 410-411, 157-160.                                                                                                                                                                  | 3.6  | 8         |
| 122 | Polysiloxaneâ€Based Block Copolymers as Structureâ€Directing Agents in the Synthesis of Hierarchically<br>Organized Silica Monoliths. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 641-648.                                                                                | 1.2  | 8         |
| 123 | A Two-Step Synthesis for Li <sub>2</sub> CoPO <sub>4</sub> F as High-Voltage Cathode Material.<br>Journal of the Electrochemical Society, 2015, 162, A2679-A2683.                                                                                                                            | 2.9  | 8         |
| 124 | Self-supporting hierarchically organized silicon networks via magnesiothermic reduction.<br>Monatshefte FA¼r Chemie, 2016, 147, 269-278.                                                                                                                                                     | 1.8  | 8         |
| 125 | Aerogels as promising materials for environmental remediation—A broad insight into the<br>environmental pollutants removal through adsorption and (photo)catalytic processes. , 2018, ,<br>389-436.                                                                                          |      | 8         |
| 126 | Biologic effects of nanoparticle-allergen conjugates: time-resolved uptake using an <i>in vitro</i> lung epithelial co-culture model of A549 and THP-1 cells. Environmental Science: Nano, 2018, 5, 2184-2197.                                                                               | 4.3  | 8         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Nanoscale Structures of Sol-Gel Materials. Molecular Crystals and Liquid Crystals, 2000, 354, 107-122.                                                                                                                       | 0.3  | 7         |
| 128 | Chemical processing of new piezoelectric materials. Smart Materials and Structures, 2001, 10, 1078-1084.                                                                                                                     | 3.5  | 7         |
| 129 | Hafnium Oxide Doped Mesostructured Silica Films. European Journal of Inorganic Chemistry, 2007, 2007, 2007, 2797-2802.                                                                                                       | 2.0  | 7         |
| 130 | Nanostructured, mesoporous Au/TiO <sub>2</sub> model catalysts – structure, stability and catalytic properties. Beilstein Journal of Nanotechnology, 2011, 2, 593-606.                                                       | 2.8  | 7         |
| 131 | Hierarchically organized silica monoliths: influence of different acids on macro- and mesoporous<br>formation. Journal of Sol-Gel Science and Technology, 2015, 73, 103-111.                                                 | 2.4  | 7         |
| 132 | Defect and Surface Area Control in Hydrothermally Synthesized<br>LiMn <sub>0.8</sub> Fe <sub>0.2</sub> PO <sub>4</sub> Using a Phosphate Based Structure Directing<br>Agent. Crystal Growth and Design, 2015, 15, 4213-4218. | 3.0  | 7         |
| 133 | Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?. Polymers, 2019, 11, 1533.                                                                                                                              | 4.5  | 7         |
| 134 | Aging of low-temperature derived highly flexible nanostructured TiO <sub>2</sub> /P3HT hybrid films<br>during bending. Journal of Materials Chemistry A, 2019, 7, 10805-10814.                                               | 10.3 | 7         |
| 135 | Hybrid carbon spherogels: carbon encapsulation of nano-titania. Chemical Communications, 2021, 57, 3905-3908.                                                                                                                | 4.1  | 7         |
| 136 | Novel Siloxane-Silica Nanocomposite Aerogels and Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 73-76.                                                                                                       | 2.4  | 6         |
| 137 | Hierarchically Structured Silica Monoliths. Materials Research Society Symposia Proceedings, 2003, 775, 171.                                                                                                                 | 0.1  | 6         |
| 138 | Changing poisson's ratio of mesoporous silica monoliths with high temperature treatment. Journal of Non-Crystalline Solids, 2006, 352, 5251-5256.                                                                            | 3.1  | 6         |
| 139 | Mesoporous silica layers with controllable porosity and pore size. Applied Surface Science, 2009, 256, S18-S21.                                                                                                              | 6.1  | 6         |
| 140 | Wet Imprinting of Channelâ€Type Superstructures in Nanostructured Titania Thin Films at Low<br>Temperatures for Hybrid Solar Cells. ChemSusChem, 2018, 11, 1179-1186.                                                        | 6.8  | 6         |
| 141 | Fe-Substituted Sodium β″-Al <sub>2</sub> O <sub>3</sub> as a High-Rate Na-Ion Electrode. Chemistry of Materials, 2021, 33, 6136-6145.                                                                                        | 6.7  | 6         |
| 142 | The nanotopography of SiO <sub>2</sub> particles impacts the selectivity and 3D fold of bound allergens. Nanoscale, 2021, 13, 20508-20520.                                                                                   | 5.6  | 6         |
| 143 | In situSAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.<br>Journal of Synchrotron Radiation, 2005, 12, 717-720.                                                                  | 2.4  | 5         |
| 144 | Porous Inorganic-Organic Hybrid Materials. , 2005, , 86-121.                                                                                                                                                                 |      | 5         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Inorganic–Organic Hybrid Porous Materials. , 2009, , 131-171.                                                                                                                                                                |      | 5         |
| 146 | TEMPO Containing Polynorbornene Block Copolymers Prepared via ROMP and Their use as Scaffolds in Sol/Gel-Process. Macromolecular Symposia, 2010, 293, 67-70.                                                                 | 0.7  | 5         |
| 147 | Nucleophilic substitution on silica surfaces: Comparison of the reactivity of α- versus<br>γ-chlorosubstituted silanes in the reaction with sodium azide. Journal of the Ceramic<br>Society of Japan, 2015, 123, 764-769.    | 1.1  | 5         |
| 148 | Ordered meso-/macroporous silica and titania films by breath figure templating in combination with non-hydrolytic sol–gel processing. Microporous and Mesoporous Materials, 2015, 217, 233-243.                              | 4.4  | 5         |
| 149 | Straightforward Solvothermal Synthesis toward Phase Pure Li <sub>2</sub> CoPO <sub>4</sub> F.<br>Crystal Growth and Design, 2016, 16, 4999-5005.                                                                             | 3.0  | 5         |
| 150 | Monolithic porous magnesium silicide. Dalton Transactions, 2017, 46, 8855-8860.                                                                                                                                              | 3.3  | 5         |
| 151 | Low-Temperature Fabrication of Mesoporous Titania Thin Films. MRS Advances, 2017, 2, 2315-2325.                                                                                                                              | 0.9  | 5         |
| 152 | Adsorption-induced deformation of hierarchical organised carbon materials with ordered, non-convex mesoporosity. Molecular Physics, 2021, 119, .                                                                             | 1.7  | 5         |
| 153 | Tannin-Based Nanoscale Carbon Spherogels as Electrodes for Electrochemical Applications. ACS<br>Applied Nano Materials, 2021, 4, 14115-14125.                                                                                | 5.0  | 5         |
| 154 | Composition-Structure Relations in Organically Modified Silica Gels. Materials Research Society<br>Symposia Proceedings, 1999, 576, 117.                                                                                     | 0.1  | 4         |
| 155 | Protein-Mediated Bioinspired Mineralization. ACS Symposium Series, 2005, , 150-163.                                                                                                                                          | 0.5  | 4         |
| 156 | Glycol-modified silanes as versatile precursors in the synthesis of thin periodically organized silica<br>films. Journal of Sol-Gel Science and Technology, 2009, 51, 256-263.                                               | 2.4  | 4         |
| 157 | Hierarchically organized materials with ordered mesopores: adsorption isotherm and<br>adsorption-induced deformation from small-angle scattering. Physical Chemistry Chemical Physics,<br>2020, 22, 12713-12723.             | 2.8  | 4         |
| 158 | Capillary bridge formation between hexagonally ordered carbon nanorods. Adsorption, 2020, 26, 563-578.                                                                                                                       | 3.0  | 4         |
| 159 | Notiz zur Synthese des 3,7â€Dicyanâ€1,5â€dimethylsemibullvalens. Liebigs Annalen Der Chemie, 1992, 1992, 297-298.                                                                                                            | 0.8  | 3         |
| 160 | Ordered Porous Nanoarchitectures with Specific Functions. Angewandte Chemie - International Edition, 2004, 43, 3216-3217.                                                                                                    | 13.8 | 3         |
| 161 | Mesoporous Silica and Titania by Glycol-Modified Precursors. Materials Research Society Symposia<br>Proceedings, 2007, 1007, 1.                                                                                              | 0.1  | 3         |
| 162 | Design of Inorganic and Inorganic-Organic Hybrid Materials by Sol-Gel Processing – From<br>Nanostructures to Hierarchical Networks. NATO Science for Peace and Security Series C:<br>Environmental Security, 2008, , 91-104. | 0.2  | 3         |

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Crystalline meso-/macroporous magnesium oxide prepared by a nanocasting route. Journal of<br>Supercritical Fluids, 2019, 152, 104549.                                      | 3.2  | 3         |
| 164 | Microstructural investigation of twin-roll cast magnesium AZ31B subjected to a single monotonic compressive stress. Journal of Alloys and Compounds, 2019, 789, 1022-1034. | 5.5  | 3         |
| 165 | From sol–gel prepared porous silica to monolithic porous Mg2Si/MgO composite materials. Journal of Sol-Gel Science and Technology, 2019, 89, 295-302.                      | 2.4  | 3         |
| 166 | A Facile Oneâ€Pot Synthesis of Hierarchically Organized Carbon/TiO <sub>2</sub> Monoliths with<br>Ordered Mesopores. ChemPlusChem, 2021, 86, 275-283.                      | 2.8  | 3         |
| 167 | A Systematic Study on Bio-Based Hybrid Aerogels Made of Tannin and Silica. Materials, 2021, 14, 5231.                                                                      | 2.9  | 3         |
| 168 | Hierarchical Organization in Monolithic Sol–Gel Materials. , 2016, , 1-49.                                                                                                 |      | 2         |
| 169 | Nanostructural Lithography via Photo-Initiated Phase Transformation of Silica-Surfactant Assemblies.<br>Materials Research Society Symposia Proceedings, 1999, 576, 263.   | 0.1  | 1         |
| 170 | Piezoelectric property of sol-gel-derived composite gels. , 2001, , .                                                                                                      |      | 1         |
| 171 | Inorganic-Organic Hybrid Hierarchically Structured Methyl-modified Silica Monoliths. Materials<br>Research Society Symposia Proceedings, 2004, 847, 320.                   | 0.1  | 1         |
| 172 | Highly Porous Silica Monoliths from Ethyl (L)-Lactate Modified Silanes. Monatshefte Für Chemie, 2006,<br>137, 635-645.                                                     | 1.8  | 1         |
| 173 | Porous Hybrid Materials. , 0, , 175-223.                                                                                                                                   |      | 1         |
| 174 | Mesostructured Silica Films with Metal Oxide Doped Pore Walls. Materials Research Society Symposia<br>Proceedings, 2007, 1007, 1.                                          | 0.1  | 1         |
| 175 | SAXS and in-situ SAXS to follow the structural evolution in hybrid materials. Materials Research<br>Society Symposia Proceedings, 2015, 1754, 3-11.                        | 0.1  | 1         |
| 176 | Organically Modified Monolithic Silica Aerogels. , 2008, , 39-45.                                                                                                          |      | 1         |
| 177 | <title>Piezoelectric property of sol-gel-derived composite gels</title> . , 2000, 3992, 630.                                                                               |      | 0         |
| 178 | Web Site: The Sol—Gel Gateway. Angewandte Chemie - International Edition, 2001, 40, 1787-1787.                                                                             | 13.8 | 0         |
| 179 | PDMS-b-PEO Block Copolymers as Surfactants in the Synthesis of Mesostructured Silica: A Theoretical and Practical Approach. , 0, , 689-695.                                |      | 0         |
| 180 | Control of the Dispersion of Metal Oxide Phases in Silica Gels via Organically Modified Alkoxysilanes.<br>, 0, , 700-704.                                                  |      | 0         |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Iron Oxide – Doped Mesostructured Silica Films. Materials Research Society Symposia Proceedings,<br>2004, 847, 437.                                                                                  | 0.1  | 0         |
| 182 | Editorial: Building Block Approaches to Inorganic and Hybrid Materials. Monatshefte Für Chemie, 2006, 137, V-VIII.                                                                                   | 1.8  | 0         |
| 183 | TEM Characterisation of Au Nanoclusters on SBA15. Microscopy and Microanalysis, 2007, 13, 268-269.                                                                                                   | 0.4  | 0         |
| 184 | Porous Metal Oxideâ€Doped Silica: Synthesis – Structure ―Applications. Zeitschrift Fur Anorganische<br>Und Allgemeine Chemie, 2010, 636, 2035-2035.                                                  | 1.2  | 0         |
| 185 | Structural design of PNIPA-based intelligent hydrogels via porous silica templates. E-Polymers, 2011, 11,                                                                                            | 3.0  | 0         |
| 186 | Solar Cells: A Low Temperature Route toward Hierarchically Structured Titania Films for Thin Hybrid<br>Solar Cells (Adv. Funct. Mater. 39/2016). Advanced Functional Materials, 2016, 26, 7196-7196. | 14.9 | 0         |
| 187 | Meso-Ordered Silica Films Formed by Sugar-Based Surfactants. Materials Research Society Symposia<br>Proceedings, 2002, 726, 1.                                                                       | 0.1  | 0         |
| 188 | Hierarchical Organization in Monolithic Sol-Gel Materials. , 2018, , 867-915.                                                                                                                        |      | 0         |
| 189 | Mesostructured Silica Thin Films. , 2008, , 29-38.                                                                                                                                                   |      | 0         |
| 190 | PDMS-b-PEO Block Copolymers as Surfactants in the Synthesis of Mesostructured Silica: A Theoretical and Practical Approach. , 0, , 689-695.                                                          |      | 0         |
| 191 | Control of the Dispersion of Metal Oxide Phases in Silica Gels via Organically Modified Alkoxysilanes.<br>, 0, , 700-704.                                                                            |      | 0         |