
Wentao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8269624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multifunctional Contrast Agent for ¹⁹ F-Based Magnetic Resonance Imaging. Bioconjugate Chemistry, 2022, 33, 881-891.	1.8	3
2	Engineering Highly Fluorescent and Colloidally Stable Blue-Emitting CsPbBr ₃ Nanoplatelets Using Polysalt/PbBr ₂ Ligands. Chemistry of Materials, 2022, 34, 4924-4936.	3.2	15
3	Compact Quantum Dots Photoligated with Multifunctional Zwitterionic Coating for Immunofluorescence and Imaging. , 2021, , .		0
4	Förster Resonance Energy Transfer between Colloidal CuInS ₂ /ZnS Quantum Dots and Dark Quenchers. Journal of Physical Chemistry C, 2020, 124, 1717-1731.	1.5	18
5	Characterizing the Brownian Diffusion of Nanocolloids and Molecular Solutions: Diffusion-Ordered NMR Spectroscopy vs Dynamic Light Scattering. Journal of Physical Chemistry B, 2020, 124, 4631-4650.	1.2	25
6	Engineering the Bio–Nano Interface Using a Multifunctional Coordinating Polymer Coating. Accounts of Chemical Research, 2020, 53, 1124-1138.	7.6	51
7	Compact, "Clickable―Quantum Dots Photoligated with Multifunctional Zwitterionic Polymers for Immunofluorescence and <i>In Vivo</i> Imaging. Bioconjugate Chemistry, 2020, 31, 1497-1509.	1.8	19
8	The dual–function of lipoic acid groups as surface anchors and sulfhydryl reactive sites on polymer–stabilized QDs and Au nanocolloids. Journal of Chemical Physics, 2019, 151, 164703.	1.2	15
9	Elucidating the Role of Surface Coating in the Promotion or Prevention of Protein Corona around Quantum Dots. Bioconjugate Chemistry, 2019, 30, 2469-2480.	1.8	28
10	Modification of Poly(maleic anhydride)-Based Polymers with H ₂ N–R Nucleophiles: Addition or Substitution Reaction?. Bioconjugate Chemistry, 2019, 30, 871-880.	1.8	45
11	Macromol. Chem. Phys. 8/2018. Macromolecular Chemistry and Physics, 2018, 219, 1870022.	1.1	О
12	Scaling Laws for Polymer Chains Grafted onto Nanoparticles. Macromolecular Chemistry and Physics, 2018, 219, 1700417.	1.1	16
13	Characterization of the Ligand Capping of Hydrophobic CdSe–ZnS Quantum Dots Using NMR Spectroscopy. Chemistry of Materials, 2018, 30, 225-238.	3.2	49
14	Enhanced Uptake of Luminescent Quantum Dots by Live Cells Mediated by a Membrane-Active Peptide. ACS Omega, 2018, 3, 17164-17172.	1.6	12
15	Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. ACS Omega, 2018, 3, 12754-12762.	1.6	22
16	A Versatile Coordinating Ligand for Coating Semiconductor, Metal, and Metal Oxide Nanocrystals. Chemistry of Materials, 2018, 30, 7269-7279.	3.2	26
17	Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials. , 2018, , .		0
18	Self-Assembled Gold Nanoparticle–Fluorescent Protein Conjugates as Platforms for Sensing Thiolate Compounds via Modulation of Energy Transfer Quenching. Bioconjugate Chemistry, 2017, 28, 678-687.	1.8	38

WENTAO WANG

#	Article	IF	CITATIONS
19	Enhanced Colloidal Stability of Various Gold Nanostructures Using a Multicoordinating Polymer Coating. Journal of Physical Chemistry C, 2017, 121, 22901-22913.	1.5	32
20	Margatoxinâ€bound quantum dots as a novel inhibitor of the voltageâ€gated ion channel Kv1.3. Journal of Neurochemistry, 2017, 140, 404-420.	2.1	10
21	Optimizing QDs and Other Inorganic Probes for Imaging and Sensing. , 2017, , .		0
22	Surface-Functionalizing Metal, Metal Oxide and Semiconductor Nanocrystals with a Multi-coordinating Polymer Platform. MRS Advances, 2016, 1, 3741-3747.	0.5	1
23	A multi-coordinating polymer ligand optimized for the functionalization of metallic nanocrystals and nanorods. Faraday Discussions, 2016, 191, 481-494.	1.6	12
24	Multifunctional and High Affinity Polymer Ligand that Provides Bio-Orthogonal Coating of Quantum Dots. Bioconjugate Chemistry, 2016, 27, 2024-2036.	1.8	50
25	Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121.	6.2	43
26	Design of a multi-coordinating polymer as a platform for functionalizing metal, metal oxide and semiconductor nanocrystals. Proceedings of SPIE, 2016, , .	0.8	0
27	Tuning the Redox Coupling between Quantum Dots and Dopamine in Hybrid Nanoscale Assemblies. Journal of Physical Chemistry C, 2015, 119, 3388-3399.	1.5	22
28	Effects of separation distance on the charge transfer interactions in quantum dot–dopamine assemblies. Physical Chemistry Chemical Physics, 2015, 17, 10108-10117.	1.3	22
29	Photoligation of an Amphiphilic Polymer with Mixed Coordination Provides Compact and Reactive Quantum Dots. Journal of the American Chemical Society, 2015, 137, 5438-5451.	6.6	91
30	A Multifunctional Polymer Combining the Imidazole and Zwitterion Motifs as a Biocompatible Compact Coating for Quantum Dots. Journal of the American Chemical Society, 2015, 137, 14158-14172.	6.6	112
31	Understanding the redox coupling between quantum dots and the neurotransmitter dopamine in hybrid self-assemblies. Proceedings of SPIE, 2015, , .	0.8	0
32	Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chemical Society Reviews, 2015, 44, 193-227.	18.7	189
33	Multidentate oligomeric ligands to enhance the biocompatibility of iron oxide and other metal nanoparticles. Proceedings of SPIE, 2014, , .	0.8	0
34	A multifunctional amphiphilic polymer as a platform for surface-functionalizing metallic and other inorganic nanostructures. Faraday Discussions, 2014, 175, 137-151.	1.6	19
35	Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems. Langmuir, 2014, 30, 6197-6208.	1.6	63
36	Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Research, 2013, 6, 159-166.	5.8	75

WENTAO WANG

#	Article	IF	CITATIONS
37	Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Research, 2010, 3, 520-527.	5.8	99
38	Self-Assembled Monolayer Islands Masked Chemical Etching for Broad-Band Antireflective Silicon Surfaces. Journal of Physical Chemistry C, 2010, 114, 1989-1995.	1.5	27
39	Langmuirâ^Blodgett Monolayer Masked Chemical Etching: An Approach to Broadband Antireflective Surfaces. Chemistry of Materials, 2009, 21, 1802-1805.	3.2	21
40	Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers. , 0, , .		0