Lawrence M Hanks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8269401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methionol, a Sulfur-Containing Pheromone Component from the North American Cerambycid Beetle Knulliana cincta cincta. Journal of Chemical Ecology, 2022, , 1.	1.8	Ο
2	A Novel Trisubstituted Tetrahydropyran as a Possible Pheromone Component for the South American Cerambycid Beetle Macropophora accentifer. Journal of Chemical Ecology, 2022, 48, 569-582.	1.8	2
3	Rapid Assessment of Cerambycid Beetle Biodiversity in a Tropical Rainforest in Yunnan Province, China, Using a Multicomponent Pheromone Lure. Insects, 2021, 12, 277.	2.2	8
4	2-Nonanone is a Critical Pheromone Component for Cerambycid Beetle Species Native to North and South America. Environmental Entomology, 2021, 50, 599-604.	1.4	0
5	Field Trials With Blends of Pheromones of Native and Invasive Cerambycid Beetle Species. Environmental Entomology, 2021, 50, 1294-1298.	1.4	4
6	3-Hydroxyhexan-2-one and 3-Methylthiopropan-1-ol as Pheromone Candidates for the South American Cerambycid Beetles Stizocera phtisica and Chydarteres dimidiatus dimidiatus, and Six Related Species. Journal of Chemical Ecology, 2021, 47, 941-949.	1.8	2
7	Pheromone Composition and Chemical Ecology of Six Species of Cerambycid Beetles in the Subfamily Lamiinae. Journal of Chemical Ecology, 2020, 46, 30-39.	1.8	16
8	Complex Blends of Synthetic Pheromones are Effective Multi-Species Attractants for Longhorned Beetles (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2020, 113, 2269-2275.	1.8	13
9	Variations on a Theme: Two Structural Motifs Create Species-Specific Pheromone Channels for Multiple Species of South American Cerambycid Beetles. Insects, 2020, 11, 222.	2.2	7
10	Multi-component blends for trapping native and exotic longhorn beetles at potential points-of-entry and in forests. Journal of Pest Science, 2019, 92, 281-297.	3.7	55
11	Common Cerambycid Pheromone Components as Attractants for Longhorn Beetles (Cerambycidae) Breeding in Ephemeral Oak Substrates in Northern Europe. Journal of Chemical Ecology, 2019, 45, 537-548.	1.8	6
12	Enantiomers of fuscumol acetate comprise the aggregationâ€sex pheromone of the South American cerambycid beetle Psapharochrus maculatissimus , and likely pheromones of the cerambycids Eupromerella plaumanni and Hylettus seniculus. Entomologia Experimentalis Et Applicata, 2019, 167, 915-921.	1.4	5
13	The Role of Minor Pheromone Components in Segregating 14 Species of Longhorned Beetles (Coleoptera: Cerambycidae) of the Subfamily Cerambycinae. Journal of Economic Entomology, 2019, 112, 2236-2252.	1.8	22
14	(S)-Sulcatol Is a Pheromone Component for Two Species of Cerambycid Beetles in the Subfamily Lamiinae. Journal of Chemical Ecology, 2019, 45, 447-454.	1.8	14
15	Evidence of Aggregation–Sex Pheromone Use by Longhorned Beetles (Coleoptera: Cerambycidae) Species Native to Africa. Environmental Entomology, 2019, 48, 189-192.	1.4	8
16	Pheromone identification by proxy: identification of aggregation-sex pheromones of North American cerambycid beetles as a strategy to identify pheromones of invasive Asian congeners. Journal of Pest Science, 2019, 92, 213-220.	3.7	17
17	Identifying Possible Pheromones of Cerambycid Beetles by Field Testing Known Pheromone Components in Four Widely Separated Regions of the United States. Journal of Economic Entomology, 2018, 111, 252-259.	1.8	31
18	Interspecific Cross-Attraction between the South American Cerambycid Beetles Cotyclytus curvatus and Megacyllene acuta is Averted by Minor Pheromone Components. Journal of Chemical Ecology, 2018, 44, 268-275.	1.8	13

#	Article	IF	CITATIONS
19	(Z)-7-Hexadecene is an Aggregation-Sex Pheromone Produced by Males of the South American Cerambycid Beetle Susuacanga octoguttata. Journal of Chemical Ecology, 2018, 44, 1115-1119.	1.8	9
20	The Common Natural Products (S)-α-Terpineol and (E)-2-Hexenol are Important Pheromone Components of Megacyllene antennata (Coleoptera: Cerambycidae). Environmental Entomology, 2018, 47, 1547-1552.	1.4	13
21	The Rare North American Cerambycid Beetle Dryobius sexnotatus Shares a Novel Pyrrole Pheromone Component with Species in Asia and South America. Journal of Chemical Ecology, 2017, 43, 739-744.	1.8	13
22	(2E,6Z,9Z)-2,6,9-Pentadecatrienal as a Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Elaphidion mucronatum. Journal of Chemical Ecology, 2017, 43, 1056-1065.	1.8	11
23	Aggregation-Sex Pheromones and Likely Pheromones of 11 South American Cerambycid Beetles, and Partitioning of Pheromone Channels. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	17
24	Evaluation of Methods Used in Testing Attraction of Cerambycid Beetles to Pheromone-Baited Traps. Journal of Economic Entomology, 2017, 110, 2269-2274.	1.8	12
25	10-Methyldodecanal, a Novel Attractant Pheromone Produced by Males of the South American Cerambycid Beetle Eburodacrys vittata. PLoS ONE, 2016, 11, e0160727.	2.5	16
26	Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications. Journal of Chemical Ecology, 2016, 42, 631-654.	1.8	123
27	(6E,8Z)-6,8-Pentadecadienal, a Novel Attractant Pheromone Produced by Males of the Cerambycid Beetles Chlorida festiva and Chlorida costata. Journal of Chemical Ecology, 2016, 42, 1082-1085.	1.8	17
28	Likely Aggregation-Sex Pheromones of the Invasive Beetle <i>Callidiellum villosulum</i> , and the Related Asian Species <i>Allotraeus asiaticus</i> , <i>Semanotus bifasciatus</i> , and <i>Xylotrechus buqueti</i> (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2016, 109, 2243-2246.	1.8	18
29	Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles. Journal of Chemical Ecology, 2016, 42, 1181-1192.	1.8	31
30	Influence of Trap Height and Bait Type on Abundance and Species Diversity of Cerambycid Beetles Captured in Forests of East-Central Illinois. Journal of Economic Entomology, 2016, 109, 1750-1757.	1.8	32
31	Identification of a Pheromone Component and a Critical Synergist for the Invasive BeetleCallidiellum rufipenne(Coleoptera: Cerambycidae). Environmental Entomology, 2016, 45, 216-222.	1.4	28
32	Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis. PLoS ONE, 2015, 10, e0134358.	2.5	32
33	(2S,4E)-2-Hydroxy-4-octen-3-one, a Male-Produced Attractant Pheromone of the Cerambycid Beetle Tylonotus bimaculatus. Journal of Chemical Ecology, 2015, 41, 670-677.	1.8	18
34	Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components. Journal of Chemical Ecology, 2015, 41, 431-440.	1.8	71
35	Generic Lures Attract Cerambycid Beetles in a Tropical Montane Rain Forest in Southern China. Journal of Economic Entomology, 2014, 107, 259-267.	1.8	45
36	Seasonal Phenology of the Cerambycid Beetles of East Central Illinois. Annals of the Entomological Society of America, 2014, 107, 211-226.	2.5	46

LAWRENCE M HANKS

#	Article	IF	CITATIONS
37	Blends of (R)-3-hydroxyhexan-2-one and alkan-2-ones identified as potential pheromones produced by three species of cerambycid beetles. Chemoecology, 2013, 23, 121-127.	1.1	32
38	Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, enhancement by host plant volatiles, and antagonism by components from heterospecifics. Chemoecology, 2013, 23, 21-44.	1.1	115
39	2-Undecyloxy-1-ethanol in combination with other semiochemicals attracts three <i>Monochamus</i> species (Coleoptera: Cerambycidae) in British Columbia, Canada. Canadian Entomologist, 2012, 144, 764-768.	0.8	32
40	Response of the Woodborers <i>Monochamus carolinensis</i> and <i>Monochamus titillator</i> (Coleoptera: Cerambycidae) to Known Cerambycid Pheromones in the Presence and Absence of the Host Plant Volatile α-Pinene. Environmental Entomology, 2012, 41, 1587-1596.	1.4	69
41	Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a diversity of cerambycid species. Canadian Journal of Forest Research, 2012, 42, 1050-1059.	1.7	86
42	A Male-Produced Aggregation Pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a Major Vector of Pine Wood Nematode. Journal of Economic Entomology, 2011, 104, 1592-1598.	1.8	92
43	Fuscumol and fuscumol acetate are general attractants for many species of cerambycid beetles in the subfamily Lamiinae. Entomologia Experimentalis Et Applicata, 2011, 141, 71-77.	1.4	61
44	cis-Vaccenyl Acetate, A Female-Produced Sex Pheromone Component of Ortholeptura valida, A Longhorned Beetle in the Subfamily Lepturinae. Journal of Chemical Ecology, 2011, 37, 173-178.	1.8	36
45	Treating Panel Traps With a Fluoropolymer Enhances Their Efficiency in Capturing Cerambycid Beetles. Journal of Economic Entomology, 2010, 103, 641-647.	1.8	118
46	Molecular Validation of a Morphological Character for Distinguishing Between the Armored Scale Insects <1>Chionaspis pinifoliae 1 and <1>Chionaspis heterophyllae 1 (Hemiptera: Diaspididae). Annals of the Entomological Society of America, 2009, 102, 381-385.	2.5	5
47	MaleMegacyllene robiniae(Coleoptera: Cerambycidae) Use Multiple Tactics When Aggressively Competing for Mates. Environmental Entomology, 2009, 38, 425-432.	1.4	7
48	Male-Produced Aggregation Pheromone of the Cerambycid Beetle Rosalia funebris. Journal of Chemical Ecology, 2009, 35, 96-103.	1.8	50
49	Male-Produced Aggregation Pheromones of the Cerambycid Beetles Xylotrechus colonus and Sarosesthes fulminans. Journal of Chemical Ecology, 2009, 35, 733-740.	1.8	67
50	A Male-produced Aggregation Pheromone Blend Consisting of Alkanediols, Terpenoids, and an Aromatic Alcohol from the Cerambycid Beetle Megacyllene caryae. Journal of Chemical Ecology, 2008, 34, 408-417.	1.8	61
51	Male-produced aggregation pheromone of the cerambycid beetle Neoclytus mucronatus mucronatus. Entomologia Experimentalis Et Applicata, 2007, 122, 171-179.	1.4	67
52	Calling Behavior of the Cerambycid Beetle Neoclytus acuminatus acuminatus (F.). Journal of Insect Behavior, 2007, 20, 117-128.	0.7	23
53	Predicted taxonomic patterns in pheromone production by longhorned beetles. Die Naturwissenschaften, 2006, 93, 543-550.	1.6	62
54	Male-Produced Aggregation Pheromone of the Cerambycid Beetle Neoclytus acuminatus acuminatus. Journal of Chemical Ecology, 2004, 30, 1493-1507.	1.8	122

LAWRENCE M HANKS

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Insect Behavior, 2003, 16, 181-187.	0.7	63
56	(Z)-9-Pentacosene ? contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology, 2003, 13, 135-141.	1.1	67
57	Body size influences mating success of the Eucalyptus longhorned borer (Coleoptera: Cerambycidae). Journal of Insect Behavior, 1996, 9, 369-382.	0.7	73
58	Mating behavior of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) and the adaptive significance of long "horns― Journal of Insect Behavior, 1996, 9, 383-393.	0.7	72