James Duffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Physiological Basis of Cerebrovascular Measurements. Neuromethods, 2022, , 1-18.	0.3	1
2	Does breathing pattern affect cerebrovascular reactivity?. Experimental Physiology, 2022, 107, 183-191.	2.0	0
3	Assessing Cerebrovascular Resistance in Patients With Sickle Cell Disease. Frontiers in Physiology, 2022, 13, 847969.	2.8	3
4	A physiology-based mathematical model for the selection of appropriate ventilator controls for lung and diaphragm protection. Journal of Clinical Monitoring and Computing, 2021, 35, 363-378.	1.6	7
5	A Promising Subject-Level Classification Model for Acute Concussion Based on Cerebrovascular Reactivity Metrics. Journal of Neurotrauma, 2021, 38, 1036-1047.	3.4	12
6	The value of a shorter-delay arterial spin labeling protocol for detecting cerebrovascular impairment. Quantitative Imaging in Medicine and Surgery, 2021, 11, 608-619.	2.0	5
7	Control of Cerebral Blood Flow by Blood Gases. Frontiers in Physiology, 2021, 12, 640075.	2.8	19
8	The Reproducibility of Cerebrovascular Reactivity Across MRI Scanners. Frontiers in Physiology, 2021, 12, 668662.	2.8	11
9	The Effect of CO2 on Resting-State Functional Connectivity: Isocapnia vs. Poikilocapnia. Frontiers in Physiology, 2021, 12, 639782.	2.8	2
10	Normal BOLD Response to a Step CO2 Stimulus After Correction for Partial Volume Averaging. Frontiers in Physiology, 2021, 12, 639360.	2.8	0
11	Differential regional cerebral blood flow reactivity to alterations in end-tidal gases in healthy volunteers. Canadian Journal of Anaesthesia, 2021, 68, 1497-1506.	1.6	4
12	Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Frontiers in Physiology, 2021, 12, 665049.	2.8	8
13	Editorial: Imaging Cerebrovascular Reactivity: Physiology, Physics and Therapy. Frontiers in Physiology, 2021, 12, 740792.	2.8	1
14	Perfusion MRI using endogenous deoxyhemoglobin as a contrast agent: Preliminary data. Magnetic Resonance in Medicine, 2021, 86, 3012-3021.	3.0	17
15	A mathematical model of cerebral blood flow control in anaemia and hypoxia. Journal of Physiology, 2020, 598, 717-730.	2.9	23
16	Cerebrovascular Reactivity Assays Collateral Function in Carotid Stenosis. Frontiers in Physiology, 2020, 11, 1031.	2.8	10
17	Accelerated ethanol elimination via the lungs. Scientific Reports, 2020, 10, 19249.	3.3	1
18	Failâ€safe aspects of oxygen supply. Journal of Physiology, 2020, 598, 4859-4867.	2.9	5

#	Article	IF	CITATIONS
19	Hypercapnia During Wakefulness Attenuates Ventricular Ectopy. Circulation: Heart Failure, 2020, 13, e006837.	3.9	2
20	Slowed Temporal and Parietal Cerebrovascular Response in Patients with Alzheimer's Disease. Canadian Journal of Neurological Sciences, 2020, 47, 366-373.	0.5	18
21	Sickle Cell Cerebrovascular Reactivity to a CO2 Stimulus Is Both Too Little and Too Slow. Blood, 2020, 136, 55-55.	1.4	1
22	Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure. Frontiers in Physiology, 2020, 11, 595486.	2.8	12
23	Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men. Journal of Physiology, 2019, 597, 3281-3296.	2.9	48
24	Cerebrovascular Resistance in Healthy Aging and Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 2019, 11, 79.	3.4	23
25	Impact of Graded Passive Cycling on Hemodynamics, Brain, and Heart Perfusion in Healthy Adults. Frontiers in Medicine, 2019, 6, 186.	2.6	4
26	The effect of acute morphine on obstructive sleep apnoea: a randomised double-blind placebo-controlled crossover trial. Thorax, 2019, 74, 177-184.	5.6	29
27	Improved White Matter Cerebrovascular Reactivity after Revascularization in Patients with Steno-Occlusive Disease. American Journal of Neuroradiology, 2019, 40, 45-50.	2.4	21
28	Comparative Assessment of Central and Peripheral Chemoreceptor Reflex Regulation of Muscle Sympathetic Nerve Activity and Ventilation. FASEB Journal, 2019, 33, 560.2.	0.5	0
29	Measurement of Cerebrovascular Reactivity as Blood Oxygen Level-Dependent Magnetic Resonance Imaging Signal Response to a Hypercapnic Stimulus in Mechanically Ventilated Patients. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 301-308.	1.6	16
30	Evaluation of Cerebrovascular Reactivity in Subjects with and without Obstructive Sleep Apnea. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 162-168.	1.6	14
31	Long-term changes in cerebrovascular reactivity following EC-IC bypass for intracranial steno-occlusive disease. Journal of Clinical Neuroscience, 2018, 54, 77-82.	1.5	9
32	Patient-Specific Alterations in CO2 Cerebrovascular Responsiveness in Acute and Sub-Acute Sports-Related Concussion. Frontiers in Neurology, 2018, 9, 23.	2.4	43
33	Importance of Collateralization in Patients With Large Artery Intracranial Occlusive Disease: Long-Term Longitudinal Assessment of Cerebral Hemodynamic Function. Frontiers in Neurology, 2018, 9, 226.	2.4	8
34	The aging brain and cerebrovascular reactivity. NeuroImage, 2018, 181, 132-141.	4.2	53
35	Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity. Frontiers in Neuroscience, 2018, 12, 409.	2.8	33
36	Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia. Human Brain Mapping, 2017, 38, 3415-3427.	3.6	41

#	Article	IF	CITATIONS
37	A non-invasive magnetic resonance imaging approach for assessment of real-time microcirculation dynamics. Scientific Reports, 2017, 7, 7468.	3.3	17
38	The role of vascular resistance in BOLD responses to progressive hypercapnia. Human Brain Mapping, 2017, 38, 5590-5602.	3.6	31
39	A Novel Stress-Diathesis Model to Predict Risk of Post-operative Delirium: Implications for Intra-operative Management. Frontiers in Aging Neuroscience, 2017, 9, 274.	3.4	18
40	Neuroimaging Assessment of Cerebrovascular Reactivity in Concussion: Current Concepts, Methodological Considerations, and Review of the Literature. Frontiers in Neurology, 2016, 7, 61.	2.4	76
41	Longitudinal Brain Magnetic Resonance Imaging CO2 Stress Testing in Individual Adolescent Sports-Related Concussion Patients: A Pilot Study. Frontiers in Neurology, 2016, 7, 107.	2.4	32
42	and T ₁ assessment of abdominal tissue response to graded hypoxia and hypercapnia using a controlled gas mixing circuit for small animals. Journal of Magnetic Resonance Imaging, 2016, 44, 305-316.	3.4	17
43	Relationship between retinal blood flow and arterial oxygen. Journal of Physiology, 2016, 594, 625-640.	2.9	31
44	Sequential gas delivery provides precise control of alveolar gas exchange. Respiratory Physiology and Neurobiology, 2016, 225, 60-69.	1.6	40
45	Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respiratory Physiology and Neurobiology, 2016, 231, 28-36.	1.6	4
46	Impaired dynamic cerebrovascular response to hypercapnia predicts development of white matter hyperintensities. NeuroImage: Clinical, 2016, 11, 796-801.	2.7	41
47	MRI-based cerebrovascular reactivity using transfer function analysis reveals temporal group differences between patients with sickle cell disease and healthy controls. Neurolmage: Clinical, 2016, 12, 624-630.	2.7	25
48	Development of White Matter Hyperintensity Is Preceded by Reduced Cerebrovascular Reactivity. Annals of Neurology, 2016, 80, 277-285.	5.3	87
49	Vascular Dysfunction in Leukoaraiosis. American Journal of Neuroradiology, 2016, 37, 2258-2264.	2.4	34
50	Cerebrovascular reactivity and white matter integrity. Neurology, 2016, 87, 2333-2339.	1.1	39
51	ldentifying Significant Changes in Cerebrovascular Reactivity to Carbon Dioxide. American Journal of Neuroradiology, 2016, 37, 818-824.	2.4	45
52	Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome. Journal of Neurosurgery, 2016, 125, 648-660.	1.6	69
53	Limb movement frequency is a significant modulator of the ventilatory response during submaximal cycling exercise in humans. Respiratory Physiology and Neurobiology, 2016, 220, 10-16.	1.6	10
54	Oxygen dissociation curves in altitude and seaâ€level residents. Experimental Physiology, 2015, 100, 341-341.	2.0	0

#	Article	IF	CITATIONS
55	Non-invasive measurement of cardiac output using an iterative, respiration-based method. British Journal of Anaesthesia, 2015, 114, 406-413.	3.4	4
56	The dynamics of cerebrovascular reactivity shown with transfer function analysis. NeuroImage, 2015, 114, 207-216.	4.2	73
57	Measuring Cerebrovascular Reactivity: The Dynamic Response to a Step Hypercapnic Stimulus. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1746-1756.	4.3	88
58	Assessing Cerebrovascular Reactivity Abnormality by Comparison to a Reference Atlas. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 213-220.	4.3	79
59	Comparing the effect of hypercapnia and hypoxia on the electroencephalogram during wakefulness. Clinical Neurophysiology, 2015, 126, 103-109.	1.5	43
60	AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Frontiers in Physiology, 2015, 6, 394.	2.8	9
61	Rates of carbon monoxide elimination in males and females. Physiological Reports, 2014, 2, e12237.	1.7	20
62	The fast exercise drive to breathe. Journal of Physiology, 2014, 592, 445-451.	2.9	23
63	Factors affecting the determination of cerebrovascular reactivity. Brain and Behavior, 2014, 4, 775-788.	2.2	57
64	Circadian cerebrovascular reactivity to CO2. Respiratory Physiology and Neurobiology, 2014, 197, 15-18.	1.6	10
65	Normal hypercapnic cerebrovascular conductance in obstructive sleep apnea. Respiratory Physiology and Neurobiology, 2014, 190, 47-53.	1.6	9
66	A conceptual model for CO2-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI. NeuroImage, 2014, 92, 56-68.	4.2	126
67	From the Journal archives: Assessing the effect of anesthetic agents on the respiratory chemoreflex control of breathing. Canadian Journal of Anaesthesia, 2014, 61, 664-670.	1.6	0
68	Non-invasive accurate measurement of arterial PCO2 in a pediatric animal model. Journal of Clinical Monitoring and Computing, 2013, 27, 147-155.	1.6	13
69	Measuring cerebrovascular reactivity: what stimulus to use?. Journal of Physiology, 2013, 591, 5809-5821.	2.9	248
70	Postâ€operative hypercapniaâ€induced hyperpnoea accelerates recovery from sevoflurane anaesthesia: a prospective randomised controlled trial. Acta Anaesthesiologica Scandinavica, 2013, 57, 623-630.	1.6	14
71	The in-vivo oxyhaemoglobin dissociation curve at sea level and high altitude. Respiratory Physiology and Neurobiology, 2013, 186, 45-52.	1.6	38
72	Unknown in vivo factors influencing the oxygen dissociation curve?. Respiratory Physiology and Neurobiology, 2013, 188, 81.	1.6	1

#	Article	IF	CITATIONS
73	Foreword. Respiratory Physiology and Neurobiology, 2013, 188, 231-232.	1.6	Ο
74	Model Validation and Control Issues in the Respiratory System. Lecture Notes in Mathematics, 2013, , 133-162.	0.2	3
75	Rebuttal from James Duffin and Jason H. Mateika. Journal of Physiology, 2013, 591, 4363-4363.	2.9	3
76	CrossTalk opposing view: Peripheral and central chemoreflexes have additive effects on ventilation in humans. Journal of Physiology, 2013, 591, 4351-4353.	2.9	33
77	Instability of the Middle Cerebral Artery Blood Flow in Response to CO2. PLoS ONE, 2013, 8, e70751.	2.5	16
78	Cerebral Oxygen Saturation: Graded Response to Carbon Dioxide with Isoxia and Graded Response to Oxygen with Isocapnia. PLoS ONE, 2013, 8, e57881.	2.5	18
79	Changes in exercise hyperpnea are more attributable to limb movement frequency than pedal loading. FASEB Journal, 2013, 27, lb869.	0.5	Ο
80	Increased Carbon Monoxide Clearance during Exercise in Humans. Medicine and Science in Sports and Exercise, 2012, 44, 2118-2124.	0.4	21
81	Response to letter from Teppema and Berendsen concerning Fan <i>et al.</i> (2012): â€~Acetazolamide and cerebrovascular function at high altitude'. Journal of Physiology, 2012, 590, 3623-3623.	2.9	1
82	The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Archiv European Journal of Physiology, 2012, 464, 345-351.	2.8	58
83	Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide. PLoS ONE, 2012, 7, e47443.	2.5	41
84	Central-peripheral respiratory chemoreflex interaction in humans. Respiratory Physiology and Neurobiology, 2012, 180, 126-131.	1.6	33
85	Commentaries on Viewpoint: Initiating inspiration outside the medulla does produce eupneic breathing. Journal of Applied Physiology, 2011, 110, 857-858.	2.5	1
86	Increased lung clearance of isoflurane shortens emergence in obesity: a prospective randomizedâ€controlled trial. Acta Anaesthesiologica Scandinavica, 2011, 55, 995-1001.	1.6	14
87	Phenotyping interindividual variability in obstructive sleep apnoea response to temazepam using ventilatory chemoreflexes during wakefulness. Journal of Sleep Research, 2011, 20, 526-532.	3.2	45
88	The cerebrovascular response to carbon dioxide in humans. Journal of Physiology, 2011, 589, 3039-3048.	2.9	233
89	Rapid elimination of CO through the lungs: coming full circle 100 years on. Experimental Physiology, 2011, 96, 1262-1269.	2.0	22
90	Measuring the respiratory chemoreflexes in humans. Respiratory Physiology and Neurobiology, 2011, 177, 71-79.	1.6	96

#	Article	IF	CITATIONS
91	Respiratory, cerebrovascular and cardiovascular responses to isocapnic hypoxia. Respiratory Physiology and Neurobiology, 2011, 179, 259-268.	1.6	14
92	End-inspiratory rebreathing reduces the end-tidal to arterial PCO2 gradient in mechanically ventilated pigs. Intensive Care Medicine, 2011, 37, 1543-1550.	8.2	28
93	The effects of continuous positive airway pressure (CPAP) on the metabolic cost and work of breathing at rest, and during exercise, in healthy individuals wearing a gas mask. FASEB Journal, 2011, 25, 1055.3.	0.5	0
94	The role of the central chemoreceptors: A modeling perspective. Respiratory Physiology and Neurobiology, 2010, 173, 230-243.	1.6	50
95	Differences in the control of breathing between Himalayan and seaâ€level residents. Journal of Physiology, 2010, 588, 1591-1606.	2.9	21
96	Differences in the control of breathing between Andean highlanders and lowlanders after 10 days acclimatization at 3850 m. Journal of Physiology, 2010, 588, 1607-1621.	2.9	19
97	Identification of a Novel Form of Noradrenergic-Dependent Respiratory Motor Plasticity Triggered by Vagal Feedback. Journal of Neuroscience, 2010, 30, 16886-16895.	3.6	24
98	Measuring the Hypoxic Ventilatory Response. Advances in Experimental Medicine and Biology, 2010, 669, 221-224.	1.6	1
99	Repeated Obstructive Apneas Induce Long-term Facilitation of Genioglossus Muscle Tone. Advances in Experimental Medicine and Biology, 2010, 669, 297-301.	1.6	9
100	Hypoventilation and Hyperventilation Syndromes. , 2010, , 1859-1880.		3
101	Integration of cerebrovascular CO ₂ reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1473-R1495.	1.8	462
102	A simple and portable breathing circuit designed for ventilatory muscle endurance training (VMET). Respiratory Medicine, 2009, 103, 1822-1827.	2.9	0
103	Decreased chemosensitivity and improvement of sleep apnea by nocturnal hemodialysis. Sleep Medicine, 2009, 10, 47-54.	1.6	53
104	Nonâ€invasive prospective targeting of arterial <i>P</i> in subjects at rest. Journal of Physiology, 2008, 586, 3675-3682.	2.9	131
105	Intermittent Hypoxia Induces Respiratory Long-Term Facilitation in Postnatal Rats. Advances in Experimental Medicine and Biology, 2008, 605, 233-238.	1.6	3
106	Physiological mechanisms of hyperventilation during human pregnancy. Respiratory Physiology and Neurobiology, 2008, 161, 76-86.	1.6	55
107	Frequency of movements and respiratory control in exercise. Respiratory Physiology and Neurobiology, 2008, 161, 221-222.	1.6	1
108	Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18000-18005.	7.1	61

#	Article	IF	CITATIONS
109	Respiratory Muscle Training and the Performance of a Simulated Anti-G Straining Maneuver. Aviation, Space, and Environmental Medicine, 2007, 78, 1035-1041.	0.5	10
110	Long-term facilitation of breathing is absent after episodes of hypercapnic hypoxia in awake humans. Respiratory Physiology and Neurobiology, 2007, 156, 132-136.	1.6	18
111	The ventilatory response to sine wave variation in exercise loads and limb movement frequency. Respiratory Physiology and Neurobiology, 2007, 158, 45-50.	1.6	15
112	Prospective targeting and control of end-tidal CO2and O2concentrations. Journal of Physiology, 2007, 581, 1207-1219.	2.9	268
113	Inspiratory activation is not required for episodic hypoxiaâ€induced respiratory longâ€term facilitation in postnatal rats. Journal of Physiology, 2007, 585, 593-606.	2.9	15
114	Measuring the ventilatory response to hypoxia. Journal of Physiology, 2007, 584, 285-293.	2.9	95
115	Enhanced chemo-responsiveness in patients with sleep apnoea and end-stage renal disease. European Respiratory Journal, 2006, 28, 151-158.	6.7	115
116	Transmission of respiratory rhythm: Midline-crossing connections at the level of the phrenic motor nucleus?. Respiratory Physiology and Neurobiology, 2006, 153, 139-147.	1.6	15
117	Rapid increases in ventilation accompany the transition from passive to active movement. Respiratory Physiology and Neurobiology, 2006, 152, 128-142.	1.6	31
118	The initial phase of exercise hyperpnoea in humans is depressed during a cognitive task. Experimental Physiology, 2005, 90, 357-365.	2.0	20
119	Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. European Journal of Applied Physiology, 2005, 94, 527-540.	2.5	91
120	Modelling the Respiratory Chemoreflex Control of Acid-Base Balance. , 2005, 2005, 5836-9.		2
121	Role of acid-base balance in the chemoreflex control of breathing. Journal of Applied Physiology, 2005, 99, 2255-2265.	2.5	93
122	Changes in respiratory control after 5 days at altitude. Respiratory Physiology and Neurobiology, 2005, 145, 41-52.	1.6	32
123	Overnight changes of chemoreflex control in obstructive sleep apnoea patients. Respiratory Physiology and Neurobiology, 2005, 146, 279-290.	1.6	34
124	Functional organization of respiratory neurones: a brief review of current questions and speculations. Experimental Physiology, 2004, 89, 517-529.	2.0	65
125	Anxiety sensitivity as a predictor of panic attacks. Psychiatry Research, 2004, 129, 273-278.	3.3	16
126	Cardio-respiratory measures following isocapnic voluntary hyperventilation. Respiratory Physiology and Neurobiology, 2004, 142, 13-25.	1.6	5

#	Article	IF	CITATIONS
127	Developmental changes in transmission of respiratory rhythm in the rat. Respiratory Physiology and Neurobiology, 2004, 142, 153-163.	1.6	9
128	The effects of carbon monoxide on respiratory chemoreflexes in humans. Environmental Research, 2004, 94, 227-233.	7.5	6
129	Epidural Catheter Penetration of Human Dural Tissue. Anesthesiology, 2004, 100, 1491-1496.	2.5	14
130	Respiratory response to passive limb movement is suppressed by a cognitive task. Journal of Applied Physiology, 2004, 97, 2112-2120.	2.5	24
131	The respiratory effects of two modes of passive exercise. European Journal of Applied Physiology, 2003, 88, 544-552.	2.5	31
132	Inhibitory connections among rostral medullary expiratory neurones detected with cross-correlation in the decerebrate rat*. Pflugers Archiv European Journal of Physiology, 2003, 446, 365-372.	2.8	21
133	Connections between respiratory neurones in the neonatal rat transverse medullary slice studied with crossâ€correlation. Journal of Physiology, 2003, 549, 327-332.	2.9	19
134	A commentary on eupnoea and gasping. Respiratory Physiology and Neurobiology, 2003, 139, 105-111.	1.6	22
135	Adaptation in the respiratory control system. Canadian Journal of Physiology and Pharmacology, 2003, 81, 765-773.	1.4	41
136	Dural Tissue Trauma and Cerebrospinal Fluid Leak after Epidural Needle Puncture. Anesthesiology, 2003, 99, 1376-1382.	2.5	46
137	CO ₂ does not affect passive exercise ventilatory decline. Journal of Applied Physiology, 2003, 95, 322-329.	2.5	12
138	Changes in respiratory control after three hours of isocapnic hypoxia in humans. Journal of Physiology, 2003, 547, 271-281.	2.9	30
139	Cerebral blood flow responses to changes in oxygen and carbon dioxide in humans. Canadian Journal of Physiology and Pharmacology, 2002, 80, 819-827.	1.4	32
140	Acetazolamide and respiratory chemosensitivity to CO2 in the neonatal rat transverse medullary slice. Respiratory Physiology and Neurobiology, 2002, 132, 279-287.	1.6	5
141	Effects of tryptophan depletion on central and peripheral chemoreflexes in man. Respiratory Physiology and Neurobiology, 2002, 133, 183-195.	1.6	13
142	Respiratory pre-motor control of hypoglossal motoneurons in the rat. Neuroscience, 2002, 110, 711-722.	2.3	76
143	Central and peripheral chemoreflexes in panic disorder. Psychiatry Research, 2002, 113, 181-192.	3.3	25
144	The Ventilatory Response to Cholecystokinin Tetrapeptide in Healthy Volunteers,. Neuropsychopharmacology, 2002, 26, 824-831.	5.4	6

#	Article	IF	CITATIONS
145	Bilateral coordination of inspiratory neurones in the rat. Pflugers Archiv European Journal of Physiology, 2002, 443, 829-835.	2.8	10
146	Caudal expiratory neurones in the rat. Pflugers Archiv European Journal of Physiology, 2002, 444, 405-410.	2.8	10
147	Central and Peripheral Chemoreflex Characteristics: Panic Disorder Patients VS. Healthy Volunteers. Advances in Experimental Medicine and Biology, 2001, 499, 435-437.	1.6	2
148	The Control of Breathing at Rest. Advances in Experimental Medicine and Biology, 2001, 499, 431-433.	1.6	1
149	Simulation of the Respiratory Control System. Advances in Experimental Medicine and Biology, 2001, 499, 315-320.	1.6	0
150	Respiratory Control of Hypoglossal Motoneurons. Advances in Experimental Medicine and Biology, 2001, 499, 101-106.	1.6	7
151	Modeling Respiratory Adaptations in Humans. Advances in Experimental Medicine and Biology, 2001, 499, 241-245.	1.6	1
152	Nucleus raphé obscurus modulates hypoglossal output of neonatal rat in vitro transverse brain stem slices. Journal of Applied Physiology, 2001, 90, 269-279.	2.5	29
153	Respiratory control of hypoglossal motoneurones in the rat. Pflugers Archiv European Journal of Physiology, 2001, 442, 78-86.	2.8	56
154	Bilateral synchronisation of respiratory motor output in rats: adult versus neonatal in vitro preparations. Pflugers Archiv European Journal of Physiology, 2001, 442, 943-951.	2.8	15
155	The Contribution of Chemoreflex Drives to Resting Breathing in Man. Experimental Physiology, 2001, 86, 109-116.	2.0	34
156	Repeated hypoxic exposures change respiratory chemoreflex control in humans. Journal of Physiology, 2001, 534, 595-603.	2.9	69
157	Simulation of cross-correlograms resulting from synaptic connections between neurons. Journal of Neuroscience Methods, 2000, 99, 65-70.	2.5	7
158	Changes in Chemoreflex Characteristics Following Acute Carbonic Anhydrase Inhibition in Humans a Rest. Experimental Physiology, 2000, 85, 847-856.	2.0	9
159	Circadian rhythms in the chemoreflex control of breathing. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R282-R286.	1.8	58
160	Changes in chemoreflex characteristics following acute carbonic anhydrase inhibition in humans at rest. Experimental Physiology, 2000, 85, 847-856.	2.0	6
161	A model of the chemoreflex control of breathing in humans: model parameters measurement. Respiration Physiology, 2000, 120, 13-26.	2.7	177
162	Functional synaptic connections among respiratory neurons. Respiration Physiology, 2000, 122, 237-246.	2.7	26

#	Article	IF	CITATIONS
163	Changes in chemoreflex characteristics following acute carbonic anhydrase inhibition in humans at rest. Experimental Physiology, 2000, 85, 847-56.	2.0	16
164	Bötzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat. Experimental Brain Research, 1999, 124, 173-180.	1.5	49
165	Mutual inhibition between Bötzinger-complex bulbospinal expiratory neurons detected with cross-correlation in the decerebrate rat. Experimental Brain Research, 1999, 125, 440-446.	1.5	18
166	Measuring central-chemoreflex sensitivity in man: rebreathing and steady-state methods compared. Respiration Physiology, 1999, 115, 23-33.	2.7	73
167	Temperature and pH affect respiratory rhythm of in-vitro preparations from neonatal rats. Respiration Physiology, 1999, 117, 97-107.	2.7	25
168	Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator. Journal of Computational Neuroscience, 1998, 5, 35-51.	1.0	37
169	The role of dorsal respiratory group neurons studied with cross-correlation in the decerebrate rat. Experimental Brain Research, 1998, 121, 29-34.	1.5	27
170	Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat. Experimental Brain Research, 1998, 122, 149-156.	1.5	53
171	Bilaterally independent respiratory rhythms in the decerebrate rat. Neuroscience Letters, 1998, 247, 41-44.	2.1	84
172	Chemoreflex thresholds to CO2 in decerebrate cats. Respiration Physiology, 1998, 113, 1-10.	2.7	3
173	Synaptic Connections to Phrenic Motoneurons in the Decerebrate Rat. Advances in Experimental Medicine and Biology, 1998, 450, 51-59.	1.6	2
174	Chemoreflex Model Parameters Measurement. Advances in Experimental Medicine and Biology, 1998, 450, 185-193.	1.6	2
175	The Ventilatory Response to Hypoxia Below the Carbon Dioxide Threshold. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 23-36.	1.7	43
176	The Pattern of Breathing Following a 10-Breath Voluntary Hyperventilation During Hyperoxic Rebreathing. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 256-267.	1.7	3
177	The effect of hypoxia on the ventilatory response to carbon dioxide in man. Respiration Physiology, 1997, 108, 101-115.	2.7	137
178	Synchronization of ventral-group, bulbospinal inspiratory neurons in the decerebrate rat. Experimental Brain Research, 1997, 117, 479-487.	1.5	16
179	The effect of exercise duration on the fast component of exercise hyperpnoea at work rates below the first ventilatory threshold. European Journal of Applied Physiology and Occupational Physiology, 1996, 74, 548-552.	1.2	6
180	The effect of a rise in body temperature on the central-chemoreflex ventilatory response to carbon dioxide. European Journal of Applied Physiology and Occupational Physiology, 1996, 72-72, 537-541.	1.2	33

#	Article	IF	CITATIONS
181	The possible role of C5 segment inspiratory interneurons investigated by cross-correlation with phrenic motoneurons in decerebrate cats. Experimental Brain Research, 1996, 112, 35-40.	1.5	26
182	Spinal connections of ventral-group bulbospinal inspiratory neurons studied with cross-correlation in the decerebrate rat. Experimental Brain Research, 1996, 111, 178-86.	1.5	63
183	Connections from upper cervical inspiratory neurons to phrenic and intercostal motoneurons studied with cross-correlation in the decerebrate rat. Experimental Brain Research, 1996, 110, 196-204.	1.5	53
184	Effects of stimulation of phrenic afferents on cervical respiratory interneurones and phrenic motoneurones in cats Journal of Physiology, 1996, 497, 803-812.	2.9	31
185	The effect of exercise duration on the fast component of exercise hyperpnoea at work rates below the first ventilatory threshold. European Journal of Applied Physiology, 1996, 74, 548-552.	2.5	1
186	Cross-correlation of augmenting expiratory neurons of the Bötzinger complex in the cat. Experimental Brain Research, 1995, 103, 251-255.	1.5	15
187	A review of the control of breathing during exercise. European Journal of Applied Physiology and Occupational Physiology, 1995, 71, 1-27.	1.2	106
188	An aid to the determination of the ventilatory threshold. European Journal of Applied Physiology and Occupational Physiology, 1995, 71, 65-70.	1.2	7
189	Bilateral connections from ventral group inspiratory neurons to phrenic motoneurons in the rat determined by cross-correlation. Brain Research, 1995, 694, 55-60.	2.2	37
190	Breathing Rhythm Generation: Focus on the Rostral Ventrolateral Medulla. Physiology, 1995, 10, 133-140.	3.1	19
191	Ventilatory responses to exercise performed below and above the first ventilatory threshold. European Journal of Applied Physiology and Occupational Physiology, 1994, 68, 327-335.	1.2	10
192	Coincidental changes in ventilation and electromyographic activity during consecutive incremental exercise tests. European Journal of Applied Physiology and Occupational Physiology, 1994, 68, 54-61.	1.2	28
193	The ventilation, lactate and electromyographic thresholds during incremental exercise tests in normoxia, hypoxia and hyperoxia. European Journal of Applied Physiology and Occupational Physiology, 1994, 69, 110-118.	1.2	36
194	Neural Drives to Breathing During Exercise. Applied Physiology, Nutrition, and Metabolism, 1994, 19, 289-304.	1.7	18
195	Entrained Breathing and Oxygen Consumption During Treadmill Walking. Applied Physiology, Nutrition, and Metabolism, 1994, 19, 432-440.	1.7	26
196	Upper cervical inspiratory neurons in the rat: an electrophysiological and morphological study. Experimental Brain Research, 1993, 95, 477-87.	1.5	74
197	Bötzinger expiratory neurones inhibit propriobulbar decrementing inspiratory neurones. NeuroReport, 1993, 4, 1215-1218.	1.2	19
198	Axonal projections and synaptic connections of C5 segment expiratory interneurones in the cat Journal of Physiology, 1993, 470, 431-444.	2.9	26

#	Article	IF	CITATIONS
199	PROJECTIONS TO BOTZINGER EXPIRATORY NEURONS BY DORSAL AND VENTRAL RESPIRATORY GROUP NEURONS. NeuroReport, 1992, 3, 393-396.	1.2	7
200	Role of upper cervical inspiratory neurons studied by cross-correlation in the cat. Experimental Brain Research, 1992, 90, 153-62.	1.5	30
201	Changes in ventilation at the start and end of moderate and heavy exercise of short and long duration. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 234-240.	1.2	13
202	Changes in ventilation in response to ramp changes in treadmill exercise load. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 480-484.	1.2	18
203	The Effect of Exercise Intensity and Duration on Ventilation during Recovery from Moderate and Heavy Exercise. , 1992, , 245-253.		1
204	A model of respiratory rhythm generation. NeuroReport, 1991, 2, 623-626.	1.2	55
205	The chemoreflex control of breathing and its measurement. Canadian Journal of Anaesthesia, 1990, 37, 933-942.	1.6	57
206	The propriobulbar respiratory neurons in the cat. Experimental Brain Research, 1990, 81, 213-20.	1.5	18
207	Changes in ventilation at the end of heavy exercise of different durations. European Journal of Applied Physiology and Occupational Physiology, 1989, 59, 385-389.	1.2	8
208	The effect of metabolic acid-base changes on the ventilatory changes at the end of heavy exercise. European Journal of Applied Physiology and Occupational Physiology, 1989, 58, 405-410.	1.2	8
209	Projections from inspiratory neurons of the nucleus retroambigualis to phrenic motoneurons in the cat. Experimental Neurology, 1989, 105, 306-310.	4.1	23
210	Inhibition of inspiratory neurons of the nucleus retroambigualis by expiratory neurons of the Botzinger Complex in the cat. Experimental Neurology, 1989, 106, 74-77.	4.1	36
211	The connections from Botzinger expiratory neurons to upper cervical inspiratory neurons in the cat. Experimental Neurology, 1989, 104, 138-146.	4.1	16
212	The Effect of Exercise on the Central and Peripheral Chemoreceptor Thresholds to Carbon Dioxide in Man. , 1989, , 63-70.		2
213	Control of Ventilation During Heavy Exercise in Man. , 1989, , 81-90.		0
214	Changes in respiration in the transition from heavy exercise to rest. European Journal of Applied Physiology and Occupational Physiology, 1988, 57, 606-610.	1.2	12
215	Projections from upper cervical inspiratory neurons to thoracic and lumbar expiratory motor nuclei in the cat. Experimental Neurology, 1988, 99, 544-555.	4.1	26
216	A signal averaging program. Brain Research Bulletin, 1988, 21, 851-853.	3.0	4

#	Article	IF	CITATIONS
217	The peripheralâ€chemoreceptor threshold to carbon dioxide in man Journal of Physiology, 1988, 406, 15-26.	2.9	83
218	Ten-Year Experience with Extracorporeal Membrane Oxygenation for Severe Respiratory Failure. Chest, 1988, 94, 681-687.	0.8	60
219	Monosynaptic excitation of thoracic motoneurones by inspiratory neurones of the nucleus tractus solitarius in the cat Journal of Physiology, 1987, 390, 415-431.	2.9	59
220	The effect of treadmill speed on ventilation at the start of exercise in man Journal of Physiology, 1987, 391, 13-24.	2.9	30
221	The effect of exercise on the central-chemoreceptor threshold in man Journal of Physiology, 1987, 383, 9-18.	2.9	63
222	Intracellular recordings from upper cervical inspiratory neurons in the cat. Brain Research, 1987, 435, 351-354.	2.2	23
223	Excitation of upper cervical inspiratory neurons by inspiratory neurons of the nucleus tractus solitarius in the cat. Experimental Neurology, 1987, 95, 126-141.	4.1	25
224	Excitation of upper cervical inspiratory neurons by inspiratory neurons of the nucleus retroambigualis in the cat. Experimental Neurology, 1987, 98, 404-417.	4.1	26
225	The contribution of peripheral chemoreceptors to ventilation during heavy exercise. Respiration Physiology, 1987, 68, 203-213.	2.7	21
226	The neuronal determinants of respiratory rhythm. Progress in Neurobiology, 1986, 27, 101-182.	5.7	119
227	An electrophysiological investigation of propriospinal inspiratory neurons in the upper cervical cord of the cat. Experimental Brain Research, 1986, 61, 625-37.	1.5	95
228	Stabilization of intracellular recordings in the cat spinal cord using high-frequency ventilation. Canadian Journal of Physiology and Pharmacology, 1986, 64, 756-759.	1.4	11
229	Respiratory rhythm generation. Canadian Anaesthetists' Society Journal, 1985, 32, 124-137.	0.5	11
230	Short-latency interactions among dorsomedial medullary inspiratory neurons in the cat. Experimental Neurology, 1985, 88, 726-741.	4.1	8
231	Cross-correlation of ventrolateral inspiratory neurons in the cat. Experimental Neurology, 1984, 83, 233-253.	4.1	17
232	The medullary respiratory neurons: a review. Canadian Journal of Physiology and Pharmacology, 1984, 62, 161-182.	1.4	38
233	The changes in ventilation and heart rate at the start of treadmill exercise. Canadian Journal of Physiology and Pharmacology, 1983, 61, 120-126.	1.4	11
234	Cross-correlation of medullary dorsomedial inspiratory neurons in the cat. Experimental Neurology, 1982, 75, 627-643.	4.1	23

#	Article	IF	CITATIONS
235	Cross correlation of medullary expiratory neurons in the cat. Experimental Neurology, 1981, 73, 451-464.	4.1	71
236	Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load. Journal of Applied Physiology, 1981, 51, 1398-1403.	2.5	42
237	Critical dependence of respiratory rhythmicity on metabolic CO2 load. Journal of Applied Physiology, 1981, 50, 45-54.	2.5	133
238	The regularity and interrelation of respiratory and cardiac rhythms at rest and during exercise. Canadian Journal of Physiology and Pharmacology, 1981, 59, 84-87.	1.4	9
239	The ventilatory response to carbon dioxide in hyperoxic exercise. Respiration Physiology, 1980, 40, 93-105.	2.7	32
240	Response of the dorsomedial respiratory neurons of cats to changes in lung volume. Experimental Neurology, 1980, 69, 334-348.	4.1	11
241	The effects of hypercapnia, hypoxia, exercise and anxiety on the pattern of breathing in man Journal of Physiology, 1979, 293, 285-300.	2.9	59
242	The effect of ethanol on the ventilatory responses mediated by the peripheral chemoreceptors in man. Canadian Anaesthetists' Society Journal, 1978, 25, 181-190.	0.5	15
243	The recruitment times and firing patterns of the medullary respiratory neurones of the cat. Respiration Physiology, 1978, 34, 247-266.	2.7	14
244	Cross-correlation of medullary respiratory neurons in the cat. Experimental Neurology, 1978, 61, 15-30.	4.1	20
245	Extracorporeal membrane oxygenator support for human lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 1978, 76, 28-32.	0.8	38
246	The entrainment of breathing frequency by exercise rhythm Journal of Physiology, 1977, 272, 553-561.	2.9	167
247	Fluidics and pneumaticsprinciples and applications in anaesthesia. Canadian Anaesthetists' Society Journal, 1977, 24, 126-141.	0.5	5
248	Control, monitor and alarm system for clinical application of a membrane oxygenator. Canadian Anaesthetists' Society Journal, 1976, 23, 143-152.	0.5	4
249	STIMULATION OF THE PERIPHERAL CHEMORECEPTORS WITH SODIUM BICARBONATE. British Journal of Anaesthesia, 1976, 48, 853-857.	3.4	7
250	THE EFFECT OF HALOTHANE AND THIOPENTONE ON VENTILATORY RESPONSES MEDIATED BY THE PERIPHERAL CHEMORECEPTORS IN MAN. British Journal of Anaesthesia, 1976, 48, 975-981.	3.4	27
251	Combination of membrane oxygenator support and pulmonary lavage for acute respiratory failure. Journal of Thoracic and Cardiovascular Surgery, 1976, 71, 304-8.	0.8	5
252	Cannulation of ascending aorta for long-term membrane oxygenator support. Journal of Thoracic and Cardiovascular Surgery, 1975, 69, 905-908.	0.8	13

#	Article	IF	CITATIONS
253	Sudden cold water immersion. Respiration Physiology, 1975, 23, 301-310.	2.7	49
254	Cannulation of ascending aorta for long-term membrane oxygenator support. Journal of Thoracic and Cardiovascular Surgery, 1975, 69, 905-8.	0.8	5
255	Phase-switching of respiration induced by central gray and hippocampal stimulation in the cat. Journal of Neural Transmission, 1974, 35, 327-335.	2.8	13
256	The simulation of multi-neurone networks: Modelling of the lateral inhibition of the eye and the generation of respiratory rhythm. Bulletin of Mathematical Biology, 1974, 36, 77-89.	1.9	12
257	A mathematical model of the chemoreflex control of ventilation. Respiration Physiology, 1972, 15, 277-301.	2.7	25
258	Limbic forebrain and midbrain modulation and phase-switching of expiratory neurons. Brain Research, 1972, 39, 235-239.	2.2	24
259	The functional organization of respiratory neurones: A review. Canadian Anaesthetists' Society Journal, 1972, 19, 1-7.	0.5	3
260	The chemical regulation of ventilation. Anaesthesia, 1971, 26, 142-154.	3.8	17
261	The Effect of Halothane on Ventilatory Responses Mediated by the Peripheral Chemoreceptors. Clinical Science, 1971, 40, 13P-14P.	1.2	4
262	An inexpensive thermistor temperature monitor. Canadian Journal of Anaesthesia, 1971, 18, 691-693.	1.6	0
263	Entrainment and chaos in a respiratory neural network model with oscillatory input. , 0, , .		0